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Chapter 0: Introduction

This book concerns knots and links in dynamical systems.

Knot and link theory is an appealing subject. The basic ideas and results may
be appreciated intuitively, simply by playing with pieces of string (e.g.[11, 1]).
Nonetheless, in spite of seafarers' development of sophisticated knots over thou-
sands of years, the mathematical theory of knots began only in the nineteenth
century. Its origins lie in Gauss's interest in electromagnetic �eld lines [67] and in
attempts to classify knotted strings in the �ther, which Lord Kelvin and others
thought might correspond to di�erent chemical elements [176, 174]. It rapidly
shed its physical origins and became a cornerstone of low-dimensional topology.

The roots of dynamical systems theory are considerably older and more tan-
gled; they may be found in the Principia Mathematica of Isaac Newton and in
attempts to model the motions of heavenly bodies. Ab initio the subject requires
more technical apparatus: the di�erential and integral calculus, for a start; but
at the same time it has kept closer touch with its physical origins. Moreover, in
the last hundred years, it too has (re)acquired a strong geometrical avor. In
fact it was in an assault on the (restricted) three body problem of celestial me-
chanics [145], in response to the prize competition to celebrate the 60th birthday
of King Oscar II of Sweden and Norway, that Henri Poincar�e essentially invented
the modern, geometric theory of dynamical systems. He went on to develop his
ideas in considerable detail in Nouvelles Methodes de la M�ecanique Celeste [146].
Today, following this work, that of the Soviet school, including Pontriagin, An-
dronov, Kolmogorov, Anosov, and Arnol'd, and of Moser and Smale and their
students in the West, the subject has reached a certain maturity. Over the last
twenty years, it has escaped from Mathematics Departments into the scienti�c
world at large, and in its somewhat ill-de�ned incarnations as \chaos theory"
and \nonlinear science," the methods and ideas of dynamical systems theory are
�nding broad application.

The basic world of a dynamical system is its state space: a (smooth) mani-
fold, M , which constitutes all possible states of the system, and a mapping or
ow de�ned on M . In one of our principal motivating examples, systems of
�rst order ordinary di�erential equations (ODEs), the vector �eld thus speci�ed
generates a ow �t :M !M; t 2 R. The general problem tackled by dynamical
systems theorists is to describe �t geometrically, via its action on subsets of M .
This implies classi�cation of the asymptotic behaviors of all possible solutions,
by �nding �xed points, periodic orbits and more exotic recurrent sets, as well as
the orbits which ow into and out of them. In many applications �t also depends
on external parameters, and the topological changes or bifurcations that occur
in M as these parameters are varied, are also of interest. In studying these and
related phenomena, one abandons the fruitless search for closed form solutions
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2 chapter 0. introduction

in terms of elementary or special functions, and seeks instead qualitative infor-
mation.

Over the past decade, knot theory, once in the inner sanctum of pure math-
ematics, has been leaking out into other �elds through several successful appli-
cations. These range from molecular biology, involving topological structures of
closed DNA strands [173], to physics, led by surprising connections with statis-
tical mechanics [99] and quantum �eld theory [197, 14]. Likewise, over the past
ten to �fteen years, several attempts have been made to draw knot theory and
dynamical systems closer together. The key idea is simple: a closed (periodic)
orbit in a three-dimensional ow is an embedding of the circle, S1, into the
three-manifold that constitutes the state space of the system, hence it is a knot.
Similarly, a �nite collection of periodic orbits de�nes a link.

Several natural questions immediately arise, directed at the following goal:
given a ow, perhaps generated by the vector �eld of a speci�c ODE, describe
the knot and link types to be found among its periodic orbits. Do nontrivial
knots occur? How many distinct knot types are represented? How many of each
type? Do well-known families, such as torus knots, algebraic knots, or rational
tangles, appear in particular cases? In any cases? Are there \new" families
of knots and links which arise naturally in certain ows? Do Hamiltonian and
other systems with conservation laws or symmetries support preferred families of
links? Do \chaotic" ows contain inherently richer knotting than simple (Morse-
Smale) ows? Indeed, how complicated can things get? { is there a single ODE
among whose periodic orbits can be found representatives of all knots and links?
Such questions might occur to topologists. Indeed, it was R.F. Williams, in the
context of a seminar on turbulence conducted in the Mathematics Department
at Berkeley in 1976, who �rst conjectured that nontrivial knotting occurs in a
well-known set of ODEs called the Lorenz equations [193].

Dynamicists, in contrast, might seek to use knot and link invariants to de-
scribe periodic orbits and so help them better understand the underlying ODEs.
In a parametrised family of ows, for example, one can observe sequences of
bifurcations in which a simple invariant set containing, say, one or two periodic
orbits, \grows" into a chaotic set of great complexity, containing a countable
in�nity of periodic orbits. In many cases, the periodic orbits are dense in the set
of interest; sometimes that set is a so-called strange attractor. The existence-
uniqueness theorem for solutions of ODEs implies that, as periodic orbits deform
under parameter variation, they cannot intersect or pass through one another.
Knot and link types therefore provide topological invariants which may be at-
tached to families of periodic orbits. Can such invariants be used to identify
orbit genealogies { to trace the bifurcation sequences in which they arose? (A
favorite problem is to describe bifurcation sequences in the two-parameter family
of maps introduced by H�enon [83], which provides a model for Smale's famous
horseshoe map.) Can operations in which new knots are created from old, such
as composition and cabling, be associated with speci�c local bifurcations? Is the
complexity of knotting related to other measures of dynamical complexity, such
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as topological entropy? Does knot theory provide �ner invariants than entropy
for the classi�cation of ows?

Of course, since periodic orbits form knots only in three-dimensional ows,
applications to dynamical systems in general are severely limited. Nonetheless,
many of the rich and wonderful behaviors that currently engage dynamicists
are already manifest in three dimensions, and so it seems well worth applying
whatever tools we can to this case. In any event, we hope the reader will �nd
the subject as beautiful, and attractive, as we do.

0.1 The contents of this volume

This book attempts to bring together two largely disparate and well developed
�elds, which have thus far only met in the pages of specialised research journals.
As such, it cannot substitute for a proper course or text in either �eld. Chapter
1, to follow immediately, provides a rapid review of the principal aspects of knot
theory and dynamical systems theory required for the remainder of the book.
In Chapter 2 we develop the major tool which allows us to pass back and forth
between hyperbolic ows and knots: the template. This was introduced (under
the name \knot holder") over twelve years ago in two papers of Birman and
Williams [23, 24]. In dynamical systems it is common to use Poincar�e or return
maps to reduce a ow to a mapping on a manifold of one lower dimension. While
Poincar�e maps preserve certain periodic orbit data, information on how the
orbits are embedded in the ow is lost. The template preserves that information,
and likewise reduces dimension. In Chapter 2 we develop a host of related
tools: subtemplates, template inations and renormalisations, and the symbolic
language which allows us to manipulate templates and explore relations among
them. We also introduce some of the particular (families of) templates which
will concern us later.

Equipped with our basic tools, in Chapter 3 we obtain some general results on
template knots and links, including the facts that, while speci�c templates may
not contain all knots and links, every template contains in�nitely many distinct
knot types. We then describe a universal template, which does contain all (tame)
knots and links, and which, moreover, arises rather naturally in certain classes
of structurally stable three dimensional ows. In the �nal section, we explore
the \embedding problem:" the question of which templates can be embedded in
other templates. By considering isotopic embeddings, we are able to recognise
universal templates hidden in ostensibly simpler ones.

The fourth chapter concerns bifurcations and knots, and directly addresses
the kinds of dynamical systems questions raised in our opening paragraphs. In
particular we focus on speci�c templates related to the H�enon mapping and the
creation of horseshoes. Here, in contrast to the limitless riches of Chapter 3,
there are severe restrictions on links (all crossings are of one sign), which lead
to uniqueness results and order relations on orbit creation in local bifurcations.
We also explore knot types born in certain global or homoclinic bifurcations,
by lifting the contrast between dynamically simple and dynamically complex
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bifurcations to the knot-theoretic level. In so doing, we derive a rather general
set of su�cient conditions for a third-order ODE to support all links as periodic
orbits.

Chapter 5 returns to basic template theory and presents the current state
of a�airs in template classi�cation and invariant theory. We commence with
a discussion of what a sensible de�nition of template equivalence should be,
based on intuition developed in Chapters 3 and 4, and continue with a primitive
but useful invariant: a zeta-function for a restricted class of templates. This
will be seen to relate nicely to the underlying symbolic dynamics, yielding an
easily-computed invariant which encodes \twisting" information in the compact
package of a rational function.

Chapter 6 is comprised of a short list of concluding remarks and open pro-
belms that pertain to template theory and its applications.

Throughout Chapters 2-5 we strive to present, for the �rst time, a fairly
complete picture of the theory of templates. As such, we include key results
of Franks, Birman, Williams and others, although we focus primarily on our
own work, relegating to an appendix some related work beyond the immediate
scope of this monograph. Accordingly, Appendix A contains brief reviews of
work by Morgan, Wada, and others on nonsingular Morse-Smale ows on three-
manifolds, which contain only limited classes of knots. This is then contrasted
with the work of Franks and work in progress by Sullivan on nonsingular Smale
ows on the three-sphere.

Despite the title, we in no way claim to include every major result in the
overlap of dynamics and knot theory. In particular, there is a natural dichotomy
between knots arising from suspended surface homeomorphisms and those aris-
ing as closed orbits in ows on three-manifolds: this text focuses on the latter
situation. The forthcoming book by P. Boyland and T. Hall [31] deals with the
former | there is a great deal of beautiful work being done in this area: Nielsen
theory and \braid types" for surface automorphisms [30, 29]. In addition, knot
theory intersects with dynamics in examining problems of integrable Hamilto-
nian systems [50], the existence of minimal ows on three-manifolds [79] and
contact geometry [45]. Finally, analogues of knotting and linking for nonperi-
odic, minimal orbits [15, 116] and \asymptotic" linking of orbits [64, 62] are very
exciting, particularly since there are applications to magnetohydrodynamics [7]
and uid mechanics [129].



Chapter 1: Prerequisites

Before introducing the tools for examining knotted periodic orbits in ows, we
provide a concise review of relevant de�nitions, ideas, and results from the topo-
logical theory of knots and links and the dynamical theory of ows in three
dimensions. This provides a language for describing phenomena, as in: a period-
doubling bifurcation gives rise to a (2; n) cabling.

Our treatment of both of these (large) bodies of theory is necessarily brief; we
wish merely to describe the main ideas to be used in subsequent chapters. Several
good references exist for these growing �elds. Standard texts for the theory of
knots and links includes the books by Rolfsen [154], Burde and Zieschang [33],
and Kau�man [101]. In the theory of dynamical systems, a wealth of good
books can be found, including those by Robinson [153], Shub [162], Arnold [6],
and Bowen [26]. Devaney's book [41] is a good introductory text on iterated
mappings. A more applied viewpoint can be found in the texts by Guckenheimer
and Holmes [76] or Arrowsmith and Place [9].

1.1 The theory of knots and links

Given a piece of string, one may tie it up into all sorts of complicated knots.
Nevertheless, as long as the ends are free, the mess may be untied completely
(though in practice this may be frustrating!). If one should join the two free
ends of the string together, then (intuitively) a knotted loop remains knotted no
matter how one tries to undo it. This is the idea behind knot theory.

1.1.1 Basic de�nitions

De�nition 1.1.1 A knot is an embedding K : S1 ,! S3 of a 1-sphere into the
3-sphere. A link L :

`
S1 ,! S3 is a disjoint, �nite collection of knots.

The three-sphere S3 is de�ned as the unit sphere in R
4. The reader who

is uncomfortable with S3 may replace it by R3 without loss, since S3 can be
considered as R3 with an additional \point at in�nity." The simplest knot is
the unknot, pictured in Figure 1.1(a). An unknot is any embedding of S1 in S3

whose image is the boundary of an embedded disc D2 � S3. The next \sim-
plest" knots1 are the trefoil knot and the �gure-eight knot depicted in Figure 1.1.
We will usually consider knots and links which are oriented, as depicted by an

1
The �rst knot theorists tabulated knots according to the minimal number of crossings in a

planar projection. In these tables (see [154] or [33]) the knots of Figure 1.1 are simplest: i.e.,

they have the fewest possible number of crossings. Other notions of \simplicity" are of course

possible [115].

5



6 chapter 1. prerequisites

(b) (c)(a)

Figure 1.1: (a) the unknot; (b) the trefoil knot; (c) the �gure-eight knot.

arrow along the knot in a diagram. Given some regular (i.e., transverse) planar
representation of an oriented knot or link, each crossing point has an induced
orientation, given by the convention of Figure 1.2. While our convention is op-
posite that which is standard in knot theory, it has prevailed in the study of
knots in dynamical systems [23, 24, 93, 88, 89, 70].

+ �

Figure 1.2: Sign convention for crossings.

The fundamental problem of knot (link) theory is the following: when are two
knots (links) the same? In knot theory, the notion of \sameness" is constructed
to match our intuition of deforming loops of knotted string.

De�nition 1.1.2 Two knots K and ~K are ambient isotopic if there exists a
continuous one-parameter family ht of homeomorphisms of S

3 such that h0 is
the identity map and h1 �K = ~K.

Remark 1.1.3 The natural analogue of De�nition 1.1.2 holds for embeddings
of spaces in S3 other than S1, e.g., surfaces and solids. When working with
knots and links in S3, it is common to refer to ambient isotopic knots as being
isotopic, even though isotopy is technically a weaker equivalence when working
with noncompact spaces [33]. We use the terms interchangeably to denote the
equivalence of De�nition 1.1.2.

Unless speci�ed explicitly, the term \knot" may refer to either the actual
embedding, or the image of the embedding, or the entire isotopy class of embed-
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dings. We will formulate most of the theory in terms of knots | generalizations
to links are automatic.

Given De�nition 1.1.2, the fundamental problem of knot theory can be stated
as follows:

Problem 1.1.4 When are two knots isotopic?

One of the �rst triumphs of knot theory was a reformulation of Problem 1.1.4
from a global-topological problem to a local-combinatorial one due to Reide-
meister [149]. Given a knot or link, consider all its presentations; that is, planar
projections with overcrossings and undercrossings marked as in Figure 1.1. Any
presentation may always be chosen such that it is regular, having only transverse
double-points.

Theorem 1.1.5 (Reidemeister [149]) Two regular presentations correspond to
isotopic links if and only if the diagrams are related by isotopy (�xing the cross-
ing points) and by a �nite sequence of the three Reidemeister moves, given in
Figure 1.3.

R1 R2

R3

Figure 1.3: The three Reidemeister moves: R1, R2, R3.

Even with Theorem 1.1.5, Problem 1.1.4 is very di�cult to solve; however,
restricted versions of this problem have clean solutions.

Consider the class of torus knots: that is, knots which lie on a torus T 2 =
S1 � S1 � S3, where each S1 is unknotted. These knots are described by their
winding number in the meridional and longitudinal directions. A type (m;n)
torus knot (m and n relatively prime positive integers) is a simple closed curve
on T 2 which winds about the longitudinal direction m times and about the
meridional direction n times [154, 33].
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Example 1.1.6 The trefoil knot of Figure 1.1(b) is a (2,3) torus knot.

The family of torus knots is well-understood; in particular, we have:

Proposition 1.1.7 ([154, 33]) Torus knots of type (m;n) and (m0; n0) are iso-
topic if and only if m = m0 and n = n0 (or, equivalently, m = n0 and n = m0).

1.1.2 New knots from old

One possible method for building and classifying knots is to begin with a simple
family (e.g., the torus knots) and combine its members in various ways. Given
two knots, there are certain constructions for creating a new knot: we shall
consider two such operations which also have dynamical interpretations.

Connected sums

The �rst operation we consider is a form of \multiplication" for knots called,
oddly enough, the sum.

Figure 1.4: The connected sum of two knots.

De�nition 1.1.8 Given two oriented knots K and ~K, their connected sum,
K# ~K, is formed by placing each in disjoint embedded 3-balls, B and ~B, such
that some closed arc of K ( ~K) lies on the boundary of B ( ~B resp.). Then, delete
the interior of each arc and identify the boundaries of the arcs via an orientation
preserving homeomorphism. See Figure 1.4 for an illustration.

Remark 1.1.9 In De�nition 1.1.8, the choice of balls and arcs does not a�ect
the connected sum. This operation is commutative and associative, but is not a
group operation due to the lack of inverses [154].

If a knot can be decomposed into the connected sum of two or more nontrivial
knots, it is said to be composite, else it is prime. The torus knots, for example,
are prime (a nice proof can be found in [33, pp. 92-93]. A classical theorem
due to Schubert states that every knot has a unique prime factorization as the
connected sum of prime knots. R. F. Williams and M. Sullivan have explored
the presence of prime decompositions of periodic orbits of ows [195, 169].
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Companions and satellites

If one thinks of the connected sum as a form of multiplication on the space of
all knots (complete with prime factorization as with the integers), the operation
of taking satellites is akin to taking powers. Let V � D2 � S1 be a solid torus
which sits in S3 in the standard way. Let K be a knot essentially embedded in
V , i.e., K is not contained in any 3-ball B � V . Let ~K be an arbitrary knot and
N ~K a tubular neighborhood of this knot in S3. A homeomorphism h : V ! N ~K

is said to be faithful if it takes the longitude of @V to a longitude of @N ~K which
is homologically trivial (it bounds a surface) in the complement S3 nN ~K .

De�nition 1.1.10 The image of K under a faithful homeomorphism h is a
satellite knot with companion ~K and pattern (K;V ): see Figure 1.5. IfK isotopes
to a subset of @V � T 2, then K is a (p; q) torus knot and h(K) is said to be the
(p; q) cable of ~K.

~K

V
K

h

h(K)

h(V )

Figure 1.5: A companion ( ~K) and a satellite (h(K)) knot.

If we take ~K to be the unknot, a (p1; q1) cable of ~K is a (p1; q1) torus knot. If
we build a (p2; q2) cable of this torus knot, we obtain a new knot. By continuing
this procedure, with (pi; qi) cablings at each step, one produces an iterated torus
knot of type f(pi; qi)gni=1. Alternatively, we say that the set of knots generated
from the unknot by the operation of cabling is called the set of iterated torus
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knots. Following Fomenko and Nguyen [50], we will denote the set of knots
generated from the unknot by the operations of cabling and connected sum the
set of generalized iterated torus knots. Both of these families of knots arise
naturally in a dynamical context as shown in Appendix A.

1.1.3 Braid theory

Knot and link theory studies embeddings of circles in S3. With some slight
restrictions on the range of the embeddings, one can also embed arcs in topo-
logically distinct ways. Braid theory studies these phenomena (see [19, 81]):

De�nition 1.1.11 Given N a positive integer, a braid on N strands is a collec-
tion b = fbigN1 of N disjoint embeddings of the interval [0; 1] into Euclidean R3

such that for each i,

1. bi(0) = (i; 0; 1);

2. bi(1) = (�(i); 0; 0) for some permutation � ; and

3. p3[bi(t)] is a monotone decreasing function of t, where p3 denotes projection
onto the third coordinate.

De�nition 1.1.12 Two braids, b and ~b, are isotopic if there exists an isotopy
ht from b to ~b as per De�nition 1.1.2 and if ht � b satis�es De�nition 1.1.11 for
all t 2 [0; 1].

The study of braids di�ers from the study of knots chiey in that there is a
natural group structure on the set of braids. Restricting to the set of all braids
on N strands, there is a group operation given by concatenation. Given braids
b and ~b, one forms the braid sum b~b by appending the top of the ith strand of
~b to the bottom of the ith strand of b: see Figure 1.6. In this way, one obtains
the braid group on N strands, BN .

Figure 1.6: The sum operation on the braid group B3: �
2
1�2 concatenated with

��11 �2 equals �
2
1�2�

�1
1 �2.
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The standard generators for BN are denoted f�i : i = 1:::(N � 1)g and are
given geometrically as the crossing of the ith strand over the (i + 1)st strand,
as depicted in Figure 1.7. The presentation for BN under these generators was
given by Artin [10] to be the following:

BN =

�
�1; �2; : : : ; �N�1 :

�i�j = �j�i ; ji� jj > 1
�i�i+1�i = �i+1�i�i+1 ; i < N � 1

�
: (1.1)

The relations for this presentation are illustrated in Figure 1.8.

�1 ��13

Figure 1.7: Examples of generators for the braid group B4.

(a) (b)

Figure 1.8: Relations for the braid group BN : (a) �i�j = �j�i for ji � jj > 1;
(b) �i�i+1�i = �i+1�i�i+1 for i < N � 1.

A relationship between braid theory and link theory is established by a simple
operation on braids known as closure. Given a braid b, one forms a closed braid, b,
by connecting the top and the bottom of each strand of b in the obvious fashion:
see Figure 1.9. The question of the extent to which closed braids represent knots
and links was answered by Alexander [3]:
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(b)(a) (c)

Figure 1.9: (a) the braid �21�2; (b) its closure; (c) this is isotopic (via the �rst
Reidemeister move) to the Hopf link.

Theorem 1.1.13 (Alexander [3]) Any link L is isotopic to a closed braid on
some number of strands.

To understand the proof of Theorem 1.1.13, the reader is encouraged to isotope
a closed piece of string into a closed braid: choose a provisional braid axis, about
which the strands should revolve, and then try to maneuver the strands into a
closed braid. One naturally uses certain \moves" which are detailed in the proof
(see [33, 19].

We will make use of closed braids in Chapter 3 as a way to build knots and
links, thanks to Theorem 1.1.13.

Certain classes of braids and closed braids will be prevalent in our treatment
of knots and links. A braid b 2 Bn will be called positive if b, as a word in
the generators f�ig, contains either no inverses or all inverses, i.e., either all
crossings in the braid are positive, in the sign convention of Figure 1.2, or all
are negative.2 A link L will be called positive if L has a representation as the
closure of a positive braid.

Remark 1.1.14 There exist knots with diagrams containing only positive cross-
ings, but which are not positive braids [182]. The proof is nontrivial, and uses
the Alexander-Conway polynomial | a link invariant.

1.1.4 Numerical invariants

The equivalence problem (Problem 1.1.4) for knots and links is extremely di�cult
and has not yet been solved in a computationally reasonable manner. However,

2
The term positive is used in both cases, either all positive crossings or all negative crossings.

We �nd this confusing and would prefer the term uniform; however, we yield to the common

practice in the remainder of this work.
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many advances have been made through the use of algebraic invariants (see
[101, 99, 20, 21, 94, 59] for examples). Here we merely describe some simpler,
classical, numerical invariants, which will su�ce for out purposes.

A numerical invariant is a well-de�ned function from link equivalence classes
to the integers. For example, the function which maps a link L to the number
of its components �(L) is obviously invariant under isotopy, and hence de�nes
a numerical invariant. However, this invariant has rather poor eyesight, since it
does not distinguish di�erent n-component links.

Consider a link L of two components,K and ~K. There is a well-de�ned notion
of how \entwined" K and ~K are, encoded in the linking number, `k(K; ~K) 2 Z.
There are numerous ways to de�ne linking number [154], the simplest of which
involves a presentation of the link (recall Theorem 1.1.5). For an oriented link,
one can label each crossing of a regular link presentation with an integer �1, as
per the convention of Figure 1.2.

De�nition 1.1.15 Given two knots K and ~K, the linking number, `k(K; ~K), is
given as half the sum of the signs over all crossings of K with ~K,

`k(K; ~K) =
1

2

X
K\ ~K

�i; (1.2)

where �i = �1 is the sign of the ith crossing and K \ ~K denotes the crossings of
K and ~K in some regular presentation.

Lemma 1.1.16 Linking number is a link isotopy invariant.

Proof: By Theorem 1.1.5, isotopy is generated by the Reidemeister moves of
Figure 1.3. It is easy to verify that linking number does not change under these
local moves. 2

The linking number `k(K; ~K) is related to the intuitive notion of linking.
For example, de�ne a separable link to be one for which there exists a smooth
embedded 2-sphere S2 in S3 which separates one (or more) component(s) of L
from the remainder of L. Any two separated components of a link are said to
be unlinked, and, indeed, their linking number must be zero, since there exists
a presentation for the link in which the components do not cross at all. We
note, however, that it does not follow that two knots with linking number zero
are necessarily separated: see the Whitehead link of Figure 2.16 for a classical
example.

One of the most important numerical invariants is the genus of a link. Recall
that closed orientable surfaces are classi�ed by genus, or the number of handles in
a handlebody decomposition. Similarly, the genus of any surface with boundary
is de�ned as the genus of the surface obtained by abstractly gluing in a disc
along each boundary component.

De�nition 1.1.17 Given a link L, the genus, g(L), is de�ned as the minimum
genus over all orientable surfaces S which span L: that is, @S = L, where @S
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is the oriented boundary. A spanning surface of minimal genus is known as a
Seifert surface.

Genus is by de�nition an invariant. Since by de�nition a knot in S3 bounds a
disk if and only if it is the unknot, then among knots, only the unknot may have
genus zero.

There are numerous formulae available for computing genera of links. We
include one, due to Birman and Williams [23], following work of Stallings [167],
which will be particularly useful in later chapters.

Theorem 1.1.18 (Birman and Williams [24]) Let L be a non-separable link of
� components, presented as a closed positive braid on N strands, with c crossings.
Then g(L), the genus of L, is given as

g(L) =
c�N � �

2
+ 1: (1.3)

Example 1.1.19 In Figure 1.10(a), we show the trefoil knot along with a span-
ning surface. An Euler number calculation reveals that the surface is a punctured
torus whose genus is one. By using Equation (1.3) on the (positive) braid repre-
sentation in Figure 1.10(b), we get � = 1, c = +3; and N = 2; hence, the genus
is one, and the surface of part (a) is actually the Seifert surface. This proves
that the trefoil is indeed knotted.

(a)
(b)

Figure 1.10: (a) A spanning surface for the trefoil knot; (b) a positive braid
presentation

Example 1.1.20 We may extend the idea of Example 1.1.19 to compute a
general formula for the genus of a torus knot. For K a (m;n) torus knot with
m > n, we present a presentation of K as a positive braid in Figure 1.11:
there are m strands on a cylinder (the logitudinal direction), n of which twist
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around the back (the meridional direction). The closure of this braid is K. It
is an exercise for the reader to count the crossings in this illustration and, using
Equation (1.3), compute the genus of K to be:

g(K) =
(m� 1)(n� 1)

2
: (1.4)

n m� n

Figure 1.11: The (m;n) torus knot as a positive braid on m strands.

Exercise 1.1.21 The �gure-8 knot has genus one and braid word �1�
�1
2 �1�

�1
2 .

Show that it cannot be presented as a positive braid. Hint: use induction on the
number of strands.

Solution: Clearly, one or two strands will not su�ce. For three strands, there
must be precisely four crossings to ensure genus one. Show that any positive
braid with four crossings is either a trefoil or a link with more than one compo-
nent. For N > 3 strands, c = N + 1, and, given a positive braid on N strands
with N + 1 crossings, there must be one braid generator that is only used once.
Thus, by \ipping" as in the �rst Reidemeister move, one can reduce the num-
ber of strands while retaining positivity, and thus obtain a counter example on
N � 1 strands. 2

The condition of having a positive closed braid is crucial to Theorem 1.1.18.
For non-positive (or mixed) braids, there exists an extension of Theorem 1.1.18
due to Bennequin [17], who derived a lower bound for genera of closed braids
given the same data as in Theorem 1.1.18:3

3
The upper bound follows from direct construction.
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Theorem 1.1.22 (Bennequin [17]) Let L be a nonseparable link of � compo-
nents, presented as a closed braid on N strands, with c+ (c�) crossings in the
positive (negative) sense. Then g(L), the genus of L, is bounded as follows:

jc+ � c�j �N � �
2

+ 1 � g(L) � jc+ + c�j �N � �
2

+ 1: (1.5)

There are numerous other classical numerical invariants for knots and links:
we mention one last example for future reference.

De�nition 1.1.23 Given a link L, the braid index of L, bi(L), is de�ned as the
minimum number of strands over all closed braid representations of L.

Again, this is an invariant by de�nition. Unfortunately, there does not exist an
analogue of Equation (1.3) for calculating braid index. Nevertheless, we will use
this invariant in Chapter 4.

This brief treatment of knot and link theory does not even begin to recount
the major developments, especially in the areas of higher invariants (maps from
link isotopy classes to algebraic objects with more structure than Z). Great
strides have been made in discovering computable multi-variable polynomial
invariants which have excellent resolution [59].Equally as exciting are the insights
gained through the [continuing] development of �nite-type, or Vasiliev invariants
[21, 22, 183]. Our (modest) goal in this section has been merely to acquaint
the unfamiliar reader with this beautiful subject. For a deeper understanding,
the \classical" theory of knots and links is well-covered in [154, 33]. Newer
perspectives can be found in [21] and the references therein. Braid theory is
covered in [19], with more recent progress reported in [20].

1.2 The theory of dynamical systems

Topology is the study of continuous maps between topological spaces: f : X !
Y . In the case where f : X ! X , one is easily persuaded to consider iterated
points or orbits of f . Dynamics seeks to understand asymptotic properties of
orbits, be they orbits of maps (Z-actions) or of ows (R-actions). In the case of
ows on 3-manifolds, we will consider the topological properties of closed orbits
as knots and links. But in order to proceed, we will need a certain amount of
terminology and theory for both maps and ows.

1.2.1 Basic de�nitions

Discrete dynamics

Although dynamical systems originated in questions about continuous-time dy-
namics (in celestial mechanics; see, for example, the historical account in [43]),
much of the theory was developed �rst for maps, as it is somewhat simpler in
this case. Thus, in this section, we assume f : M ! M is a di�eomorphism of
an n-manifold M . The orbit, o(x), of a point x 2 M is de�ned as the set of
iterates ffk(x) : k 2 Zg.
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Remark 1.2.1 Although we state the results for di�eomorphisms, much of the
theory goes through for smooth noninvertible maps, for which one works with
the orbits ffk(x) : k 2 Ng. The case of one-dimensional noninvertible maps
will be of particular concern in Section 1.2.3, and subsequently in the study of
semiows on templates.

There are two primary problems associated to the dynamics of maps. The �rst
is the equivalence problem (cf. Problem 1.1.4):

De�nition 1.2.2 Two di�eomorphisms f : M ! M and ~f : N ! N are
conjugate if there exists a homeomorphism h : M ! N such that the following
diagram commutes:

M
f�! M

h # # h

N
~f�! N

(1.6)

Problem 1.2.3 When are two di�eomorphisms conjugate?

The second principal problem of dynamics concerns stability: when are all
\nearby" maps equivalent?

De�nition 1.2.4 A di�eomorphisms f : M ! M is structurally stable if all
di�eomorphisms in a su�ciently small neighborhood of f in C1(M) are conjugate
to f .

Problem 1.2.5 When is a map structurally stable?

Problems 1.2.3 and 1.2.5 are relevant, not only to the study of maps and ows
(to be discussed below), but also to the physical processes that are frequently
modeled by such systems. They are large problems, whose study has spawned a
number of important results and perspectives.

We begin by breaking the problem down. An invariant set of f is a subset
� � M such that f(�) = �. An equilibrium, or �xed point for f is a one-point
invariant set. Understanding of the behavior on an invariant set � is greatly
facilitated if the action of f on � can be decomposed into uniformly expanding
and contracting pieces. This is the kernel of the notion of hyperbolicity.

De�nition 1.2.6 An invariant set � � M for a map f : M ! M is hyperbolic
if there exists a continuous f -invariant splitting of the tangent bundle TM� into
stable and unstable bundles Es

� �Eu
� with

kDfn(v)k � C��nkvk 8 v 2 Es
�; 8 n > 0;

kDf�n(v)k � C��nkvk 8 v 2 Eu
�; 8 n > 0;

(1.7)

for some �xed C > 0; � > 1.

If f is hyperbolic on all of M , we say that f is Anosov. Given a hyperbolic
structure on an invariant set, the dynamics and stability of orbits on that piece
are well-understood, as we now describe.
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Example 1.2.7 (the toral Anosov map) Consider the linear map f : R2 !
R
2 given by

f :

�
x

y

�
7!
�
2 1
1 1

��
x

y

�
=

�
2x+ y

x+ y

�
: (1.8)

The point (0; 0) is an equilibrium point which is hyperbolic since Df acts on
the tangent plane with the same linear map, and this map has eigenvalues and
eigenvectors

�u;s =
3

2
� 5

2

p
2 ; vu;s =

�
1

1
2
� 1

2

p
5

�
: (1.9)

Thus, the map f has expanding (unstable) and contracting (stable) bundles, Eu

and Es, along the span of each eigenvector. Notice that the map f preserves the
integer lattice; hence, we may consider f as a map on R2=Z2, i.e., the torus T 2.
Since f has determinant 1, the induced map on T 2 is invertible. While the action
of f on R2 is rather bland, its action on T 2 is quite interesting: the stable and
unstable directions (Es and Eu) have irrational slopes, so these project down to
invariant manifolds on T 2 which wind about the torus densely: see Figure 1.12.
Furthermore, the periodic points of f on T 2 are dense, since any pair of rational
numbers with the same denominator gives the coordinates of a periodic point.

f

Figure 1.12: The action of the map f on T 2.

Remark 1.2.8 The map of Example 1.2.7 is hyperbolic on all of T 2, hence it
is Anosov. We will return to this toral Anosov map in x2.3.4.

Notice in Example 1.2.7 that the stable and unstable bundles in the tangent
space are mimicked in the base space by invariant manifolds (the projection of
Es and Eu) on which the map is uniformly contractive or expansive. For a map
on M with a hyperbolic structure on some invariant set �, the splitting of the
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tangent bundle TM� into invariant stable and unstable bundles projects down
to give invariant stable and unstable manifolds in M . This is the content of one
of the key results of this �eld: the Stable Manifold Theorem.4

Theorem 1.2.9 (The Stable Manifold Theorem: Hirsch, Pugh, and Shub
[84]) Given a di�eomorphism f :M !M with a hyperbolic invariant set �, for
each x 2 �, the sets

W s(x) = fy 2M : limn!1 kfn(y)� fn(x)k = 0g ;
W u(x) = fy 2M : limn!�1 kfn(y)� fn(x)k = 0g ; (1.10)

are smooth, injective immersions of the bundles Es
x and Eu

x respectively. In
addition, W s(x) and W u(x) are tangent to the bundles at x: T (W s(x))x = Es

x

and T (W u(x))x = Es
x. The sets W

s(x) and W u(x) are known as the stable and
unstable manifolds of x.

Remark 1.2.10 The notion of local stable and unstable manifolds is also useful.
Given f as in Theorem 1.2.9, the local stable and unstable manifolds are de�ned
as:

W s
loc(x) = fy 2M : limn!1 kfn(y)� fn(x)k = 0

and kfn(y)� fn(x)k < � 8n � 0g ;
W u

loc(x) = fy 2M : limn!�1 kfn(y)� fn(x)k = 0
and kfn(y)� fn(x)k < � 8n � 0g ;

(1.11)

for � of \appropriately" small size.5 Theorem 1.2.9 then states that W s
loc(x) and

W u
loc(x) are tangent to E

s
x and E

u
x .

Theorem 1.2.9 is a very strong result, which we will rely upon frequently
to describe the dynamics on a hyperbolic invariant set. The real issue then
is ascertaining the smallest invariant subset of M which contains \all" of the
essential dynamics of the ow, and then considering systems in which this piece
is hyperbolic. Through work of Smale, Shub, and others [165, 162], we know
this essential piece to be the chain-recurrent set.

De�nition 1.2.11 Given a map f :M !M , a point x 2M is chain-recurrent
for f if, for any � > 0, there exists a sequence of points fx = x1; x2; : : : ; xn�1; xn =
xg such that kf(xi) � xi+1k < � for all 1 � i � n� 1. The chain-recurrent set,
R(f), is the set of all chain-recurrent points on M .

Remark 1.2.12 The chain-recurrent set R(f) is closed and invariant.

When one has a hyperbolic chain-recurrent set, there is a sort of prime decom-
position theorem for the associated dynamics:

4
The Stable Manifold theorem was proved in stages, by several authors, starting with the

cases of � a �xed point or periodic orbit. Theorem 1.2.9 is a rather general statement.

5
There is some ambiguity about the size of � { an appropriate size is usually clear from the

context.
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Theorem 1.2.13 (Smale [165]) Given a di�eomorphism f : M ! M having
a hyperbolic chain-recurrent set, R(f) is the union of disjoint basic sets, Bi,
i = 1; 2; : : : ; N . Each Bi is closed, invariant, and contains a dense orbit. The
periodic orbit set of each Bi is dense within Bi.

In later chapters, we will often deal with systems which have hyperbolic
chain-recurrent sets of various types. One more condition is often required: a
map is said to satisfy the strong transversality condition if, for all x; y 2 R(f), the
stable and unstable manifolds,W s(x) andW u(y), are transverse. This condition
is important in the de�nition of Morse-Smale and Smale di�eomorphisms. A
Smale di�eomorphism is one which has a zero-dimensional hyperbolic chain-
recurrent set satisfying the strong transversality condition, while a Morse-Smale
di�eomorphism is a Smale di�eomorphism for which the chain-recurrent set is
�nite.

Working with hyperbolic chain-recurrent sets and transversality has permit-
ted a partial solution of the stability problem (Problem 1.2.5):

Theorem 1.2.14 (Robbin [150], Robinson [151]) Any di�eomorphism f :M !
M having a hyperbolic chain-recurrent set and satisfying the transversality con-
dition, is structurally stable.

Continuous dynamics

A map can be considered as a Z-action on M . A continuous analogue to a map
is an R-action, or a ow.

De�nition 1.2.15 A ow on a manifoldM is a continuous map � : R�M !M

satisfying the following conditions:

1. �t � �(t;�) :M !M is a homeomorphism of M for all t;

2. �0 = idM , that is, �0(x) = x for all x 2M ;

3. �t(�s(x)) = �t+s(x) for all s; t 2 R.

While ows and maps are fundamentally di�erent objects, in certain in-
stances they can be related. Given a map f : M ! M , one can de�ne the
suspension ow of f to be the quotient space of M � R with the trivial ow
�t(x; s) = (x; s + t) via identifying (x; s) with (f(x); s + 1). The ow �t passes
to a suspension ow, ~�t, acting on the mapping torus, ~M = M � R=(x; s) �
(f(x); s + 1). In the case where f is isotopic to the identity map, ~M is homeo-
morphic to M � S1, hence the name.

Conversely, given a ow  t on a closed manifold S, we say that S has a
local cross section (or Poincar�e section) if there exists a closed codimension-one
submanifold � � S which transversely intersects the ow at every point of �. In
the case where some subset U � � consists of orbits which return to � in �nite
time, there is a well-de�ned return map (or Poincar�e map) r : U ! � which
assigns to a point p 2 U the image  T (p)(p), where T (p), the return time, is the
smallest t > 0 such that  t(p) 2 �. In the case where � intersects all ow lines



1.2. the theory of dynamical systems 21

of �t, we say that � is a global cross section. Clearly, taking the (appropriate)
Poincar�e section is the inverse of suspending a map. The study of iterated
mappings assumed its central importance in dynamics after Poincar�e developed
the technique of cross-sections and return maps to study periodic orbits in ows
generated by ordinary di�erential equations: examples appear throughout the
remainer of this text, most notably in Chapter 4.

When passing to ows, many of the de�nitions of x1.2.1 carry over with the
obvious modi�cations: e.g., invariant sets, periodic orbits, etc. A few de�nitions
require additional explanation:

De�nition 1.2.16 An invariant set � for a ow �t on M is hyperbolic if there
exists a continuous �t-invariant splitting of the tangent bundle TM� into Es

� �
Eu
� �Ec

� with

kD�t(v)k � Ce��tkvk 8 v 2 Es
�; 8t > 0;

kD��t(v)k � Ce��tkvk 8 v 2 Eu
�; 8t > 0; (1.12)

d�t

dt

����
t=0

(x) spans Ec
x 8x 2 �;

for some �xed C > 0; � > 1. The one-dimensional \center" direction Ec
x is

tangent to the orbit itself at each point.

De�nition 1.2.17 Let X � � be a subset of a hyperbolic invariant set of a
ow �t on M . Then the stable and unstable manifolds of X in M are given by

W s(X) = fy 2M : limt!1 k�t(X)� �t(y)k = 0g ;
W u(X) = fy 2M : limt!�1 k�t(X)� �t(y)k = 0g : (1.13)

The local stable and unstable manifolds of a set X are given by:

W s
loc(X) = fy 2M : limt!1 k�t(y)� �t(X)k = 0

and k�t(y)� �t(X)k < � 8t � 0g ;
W u

loc(X) = fy 2M : limt!�1 k�t(y)� �t(X)k = 0
and k�t(y)� �t(X)k < � 8t � 0g ;

(1.14)

For � an \appropriately" small positive number.

Remark 1.2.18 Given  a periodic orbit for a ow �t, the local stable and
unstable manifolds can carry additional information. Consider the case where,
say, W s

loc() has dimension two: then, the local stable manifold is a ribbon
containing  as a core. This ribbon is homeomorphic to either an annulus or a
M�obius band, yielding an untwisted or twisted periodic orbit respectively. We
use such information in x3.1, x4.1, and x5.3.

De�nition 1.2.19 Given a ow �t onM , a point x 2M is chain-recurrent for �
if, for any � > 0, there exists a sequence of points fx = x1; x2; : : : ; xn�1; xn = xg
and real numbers ft1; t2; : : : ; tn�1g such that ti > 1 and k�ti(xi)�xi+1k < � for
all 1 � i � n� 1. The chain-recurrent set, R(�), is the set of all chain-recurrent
points on M .
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The Stable Manifold Theorem for ows is entirely analogous to Theorem
1.2.9, and Theorem 1.2.13 holds as stated for ows with hyperbolic chain-
recurrent sets. The de�nitions of Morse-Smale and Smale ows follows with
one modi�cation: their chain-recurrent sets are one-dimensional, since these are
ows. Hence, a Morse-Smale ow is a ow which has a �nite number of hyper-
bolic �xed points and periodic orbits, all of whose stable and unstable manifolds
intersect transversally: see Appendix A.

1.2.2 Symbolic dynamics

One of the most remarkable { and fortunate { properties of complicated hyper-
bolic invariant sets is the description they admit via symbolic dynamics. This
theory has a long history, beginning with its use by Hadamard in describing
closed geodesics [80], and continuing in the work of Morse [133, 134].

Shifts and subshifts

Let � = fx1; x2; : : : ; xNg be an alphabet of N letters. Denote by �N the space
of bi-in�nite symbol sequences in �:

�N = f: : : a�2a�1:a0a1a2 : : : : ai 2 �; 8i 2 Zg = �Z: (1.15)

Points in �N will be called itineraries. The space �N is given the product
topology and can be endowed with a metric as follows. If a = (ai)

1
i=�1 and

b = (bi)
1
i=�1 are itineraries, then the distance d(a;b) is

d(a;b) =

1X
n=�1

�(n)

2jnj
; where �(n) =

�
0 : an = bn
1 : an 6= bn

: (1.16)

Under this metric, points in �N are close when their symbol sequences agree on
large blocks forwards and backwards from the \midpoint" a0.

De�ne the shift map � : �N ! �N as follows:

�(: : : a�2a�1:a0a1a2 : : :) = : : : a�1a0:a1a2a3 : : : : (1.17)

Under the product topology, the shift map � is a homeomorphism. The dynam-
ical system (�N ; �) is called the full N-shift.

GivenA anN byN matrix of zeros and ones, an itinerary a = : : : a�1:a0a1 : : :
is admissible with respect toA at i if, for aiai+1 = xjxk (where j; k 2 f1; 2; :::; Ng),
A(j; k) = 1. Any itinerary a which is admissible with respect to A at all i is
called admissible.

De�nition 1.2.20 Given A an N by N matrix in zeros and ones, the subshift of
�nite type associated with A is the dynamical system (�A; �), where �A � �N is
the set of admissible itineraries and � is the shift map. The matrix A is known as
the transition matrix for �A, since it speci�es those transitions between symbols
that are possible within a sequence.
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Example 1.2.21 Consider the subshift of �nite type associated with the tran-
sition matrix

A =

2
4 1 1 0

1 1 1
1 1 1

3
5 : (1.18)

Then the system (�A; �) consists of all bi-in�nite sequences in fx1; x2; x3g not
containing x1x3 as a subword.

Remark 1.2.22 An alternative to De�nition 1.2.20 comes from graph theory.
Let � be a directed (oriented) �nite graph with vertex set v = fvig and edge
set e = fejg, such that there exists at most one edge connecting any ordered
vertex pair in v� v. Then the space of bi-in�nite, continuous, directed paths in
� can be put in bijective correspondence with all bi-in�nite symbol sequences in
fvig admissible with respect to a transition matrix Av , where Av(i; j) = 1 if and
only if there is a continuous path from vi to vj . Alternatively, directed paths in
� can also be represented by symbol sequences in the edge labels fejg, where
the transition matrix Ae satis�es Ae(i; j) = 1 if and only if there the tip of the
edge ei meets the tail of the edge ej . In general, these matrices, Av and Ae,
will di�er. Thus, since the space of paths on � is the same, we have shown the
existence of di�erent subshifts which are nevertheless conjugate: see Figure 1.13.

v1 v2 e1 e2

Figure 1.13: The vertex graph (left) and the edge graph (right) associated to
the 2� 2 matrix A, where A(i; j) = 1 for all i; j.

Symbolic dynamics and subshifts of �nite type are very concrete | one can
combinatorially determine all the periodic orbits, �xed points, etc. symbolically.
On the other hand, given any bi-in�nite \random" sequence of ones and twos,
there is an orbit in the full 2-shift whose dynamics precisely follows this sequence
of x1's and x2's; hence, these systems can encode complicated dynamics.

Our interest in symbolic dynamics lies in the fact that they capture the
dynamics of hyperbolic invariant sets of maps.

Theorem 1.2.23 (Bowen [26]) Let f : M ! M be a di�eomorphism with a
hyperbolic chain-recurrent set R and � � R a basic set. Then, there exists a
semiconjugacy h : �A ! � between � and a subshift of �nite type. That is, h
is a continuous surjection with h� = fh. If � is zero-dimensional then h is a
homeomorphism; i.e., h is a conjugacy.
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For details of the proof of Theorem 1.2.23, see Bowen's work [26], or the refor-
mulations in [53, 162]. The essential tools for Theorem 1.2.23 are rectangles and
Markov partitions, both objects which will be of great use to us in Chapter 2.

De�nition 1.2.24 For f a di�eomorphism and � a hyperbolic basic set, a closed
(not-necessarily connected) set R � � is a rectangle provided:

1. W s
loc(x) \W u

loc(y) 2 R is a single point for all x; y 2 R; and

2. int(R) is dense in R.

De�nition 1.2.25 Let f be a di�eomorphism, � a hyperbolic basic set for f ,
and 
 a �nite collection of rectangles Ri. Let W s(x;Ri) � W s

loc(x) \ Ri and
W u(x;Ri) �W u

loc(x) \ Ri. Then 
 is a Markov partition for f if:

1. � = [iRi;

2. int(Ri) \ int(Rj) = ;;

3. for x 2 int(Ri) and f(x) 2 int(Rj),

f(W s(x;Ri)) �W s(f(x); Rj)); W u(f(x); Rj) � f(W u(x;Ri));

4. for x 2 int(Ri) \ f�1(int(Rj)),

int(Rj) \ f [W u(x; int(Ri))] = W u(f(x); int(Rj ));

int(Ri) \ f [int(W s(f(x); int(Rj)))] = W s(x; int(Ri)):

Condition 4 is excluded in many de�nitions; however, any partition satisfying
the �rst three can be re�ned to have rectangles of arbitrarily small diameter,
implying Condition 4 [153, Lemma 6.8].

Remark 1.2.26 Although rectangles are not necessarily connected, or even lo-
cally connected, they can usually be thought of as disjoint rectangular simplices:
see Example 1.2.28 below and the proof of Lemma 2.2.5. A Markov partition
gives rise to a subshift in the following manner: let fRigN1 be a Markov partition
for a basic set � of f as above. De�ne the N �N matrix A by

A(i; j) =
�

1 : f(Ri) \ Rj 6= ;
0 : f(Ri) \ Rj = ;

: (1.19)

Then, the content of Theorem 1.2.23 is that the subshift of �nite type (�A; �) is
semiconjugate to (�; f), and conjugate in the case when � is zero-dimensional.

Remark 1.2.27 There exists an analogue of Theorem 1.2.23 for non-invertible
maps. Let �+

A denote the space of semi-in�nite symbol sequences admissible
with respect to A. If we rede�ne the shift map as � : (a0a1a2 : : :) 7! (a1a2 : : :),
then the system (�+

A; �) is a one-sided subshift of �nite type. The analogue
to Theorem 1.2.23 then holds for hyperbolic noninvertible maps and one-sided
subshifts.
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Example 1.2.28 (Smale's horseshoe) Consider a map f : I � I ! R
2 on

the square given as in Figure 1.14. The map acts linearly on the horizontal
strips labeled H1 and H2, stretching by a factor �

u > 2 in the vertical direction
and compressing by �s < 1

2
in the horizontal direction, while bending the entire

square into a \horseshoe."

f

1

2

1

2

Figure 1.14: The Smale horseshoe map.

Let � denote the set of points in I�I which remain in I�I under all forwards
and backwards iterates of f . This set is invariant and is contained in H1 [H2.
Because of the linear action on horizontal strips, the local stable manifold of a
point x 2 � is a horizontal line segment passing through x. Similarly, the local
unstable manifold of x is a vertical line segment through x. It follows that � is
a closed hyperbolic invariant set for f .

It is left as an exercise for the reader to show that the intersection of � with
the (literal) rectangles H1 and H2 provides a Markov partition for f j�. Since
� is the cartesian product of two Cantor sets in the interval, it follows that
� is zero-dimensional and, via Theorem 1.2.23, has dynamics conjugate to the
subshift of �nite type induced by the Markov partition: in this case, the full
2-shift. By writing down bi-in�nite sequences of symbols, we can immediately
conclude that there are, e.g., two �xed points, a countable in�nity of periodic
orbits, an uncountable number of nonperiodic orbits, and an orbit of f dense in
�.

Example 1.2.28 is fundamental to the study of complicated dynamics, since it is
perhaps the simplest example of a nontrivial hyperbolic set. Moreover, it occurs
widely in dynamical systems modeling physically relevant processes, including
Poincar�e maps for periodically forced oscillators (cf. [76] and x2.3.2 below).
In subsequent chapters, we will consider the suspension of the horseshoe map
f and regard the periodic orbits as knots. Symbolic dynamics will then give
us a language for describing these knots. To the readers unfamiliar with the
horseshoe, we suggest that either (1) they consult a good reference for more
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information (e.g.[153, 41, 76]); and/or (2) they complete the following exercises
to strengthen understanding of this important example:

Exercise 1.2.29 Draw a picture of the second iterate of f , as well as its inverse;
then, prove that � is zero-dimensional.

Exercise 1.2.30 Describe the local stable and unstable manifolds of an itinerary
in �2 under �. Give an example of a dense orbit for (�2; �).

Exercise 1.2.31 Generalize the horseshoe map to a map which corresponds to
the subshift of �nite type given in Example 1.2.21.

As an indication of the fundamental nature of Example 1.2.28, as well as
to prepare the way for future examples, we recall the Poincar�e-Birkho�-Smale
homoclinic Theorem. This theorem concerns the very important concept of
homoclinic orbits, originally due to Poincar�e [146, Vol. 3].

De�nition 1.2.32 Given a map f : M ! M (or, a ow �t on M) having a
hyperbolic �xed point p, p has a homoclinic orbit if the intersection of the stable
and unstable manifolds of p is nonempty: i.e., W s(p) \ W u(p) 6= ;. In the
case of a map, we distinguish between transverse homoclinic orbits, for which
TxW

u(p) � TxW
s(p) = TxM for all x 2 W s(p) \ W u(p), and nontransverse

homoclinic orbits, for which this condition fails.

Theorem 1.2.33 (The Poincar�e-Birkho�-Smale Homoclinic Theorem

[146, 18, 164]) Let f : R2 ! R
2 be a di�eomorphism with p a �xed point

supporting a transverse homoclinic orbit. Then, for some N > 0, fN contains a
Smale horseshoe in a neighborhood of the homoclinic orbit.

Remark 1.2.34 By \containing a horseshoe" we mean that there exists a com-
pact invariant subset near the homoclinic orbit which is conjugate to the map
of Example 1.2.28. Hence, from very general hypotheses one can apply symbolic
dynamics to describe and understand complicated dynamics. This perspective
will be of use in the remainder of this book as we seek to describe and understand
knotted periodic orbits in ows.

Topological entropy

The question arises which shifts or subshifts are equivalent up to conjugacy (cf.
Remark 1.2.22). While this problem was completely solved by Williams [191],
an earlier result gave rise to an easily computable invariant known as topological
entropy. The original de�nition of topological entropy for a map f acting on a
compact manifoldM considered the growth rates of open covers ofM under the
action of f . We will use an alternate de�nition due to Bowen [26].

De�nition 1.2.35 Given f :M !M a di�eomorphism with compact invariant
set �, an integer n > 0, and a real number � > 0, an (n; �)-separated set S � � is
a set for which any two distinct points x and y in S satisfy d(fk(x); fk(y)) > �
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for some 0 � k < n. De�ne s(n; �) to be the maximum cardinality of any
(n; �)-separated subset of �. Then, the topological entropy of f on � is given as

h(f) = lim
�!0

lim
n!1 sup

log s(n; �)

n
: (1.20)

De�nition 1.2.35 is by no means transparent. An (n; �)-separated set is a col-
lection of points which avoid one another (up to �) within the initial segment of
the orbit (up to n iterates). On a compact manifold M , every such set must be
�nite. The entropy is thus the limit of the growth rate (in n) of the maximal
number of orbits which separate, as we increase our sensitivity to separation
(�! 0).

Part of the di�culty in understanding De�nition 1.2.35 is in ascertaining
what topological entropy measures. In short, a map with positive entropy has a
great deal of \activity" | the number of orbits which are separated under the
action of f grows at an exponential rate. This implies that both stretching (for
separation) and folding (for compactness) actions are necessary for complicated
dynamics, cf. Example 1.2.28. Alternatively, a map which has zero entropy (e.g.,
an isometry) would indicate a relatively small degree of complicated dynamics.
A rough generalization is that positive topological entropy signals \chaotic"
dynamics.

Remark 1.2.36 Two maps on compact spaces which are conjugate must have
the same entropy, since the conjugacy is a uniformly continuous homeomorphism
which preserves s(n; �) after a change of scale in �. Hence, topological entropy
is a dynamical invariant. Topological entropy for ows is less well-de�ned: if we
de�ne the entropy of a ow to be the entropy of the time-one map, then we can
at least distinguish zero-entropy from positive-entropy ows.

Calculating entropy is in general a di�cult task: fortunately, the entropy of the
shifts and subshifts of x1.2.2 are readily computed.

Theorem 1.2.37 Let �A denote the subshift of �nite type associated with the
matrix A. Then the entropy of the shift map � is the log of the spectral radius
of A.

Theorem 1.2.37 relies upon the Perron-Frobenius Theorem for matrices with
positive entries [143, 60]. A nice proof of Theorem 1.2.37 can be found in [153].

Example 1.2.38 The entropy of the full 2-shift is log(2), since the full 2-shift
has as transition matrix a 2�2 matrix with ones in each entry. Thus by Remark
1.2.36 we know that the Smale horseshoe map has entropy equal to log(2).

In the Appendix, we will use entropy to characterize knots and links, partitioning
the set of links into zero-entropy and positive-entropy links.
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1.2.3 Bifurcations and one-dimensional maps

We have thus far considered the case in which the dynamical system (or its
chain-recurrent set) is hyperbolic. Now suppose we have a family of systems
dependent upon a parameter � 2 Rn. By Theorem 1.2.14, as long as the system
is hyperbolic, varying the parameter has no qualitative e�ect. However, if we
specify merely that the system have the appropriate hyperbolic structure for a
certain �0, then varying the parameter � may alter it drastically | �xed points,
periodic orbits, and basic sets may appear or vanish in bifurcations.

We review the simplest types of bifurcations in order to provide a language
with which to describe the creation of knotted orbits in parametrized families of
three-dimensional ows in Chapter 4. For more complete expositions, see [39,
76]. The following three examples represent the simplest types of bifurcations
which can be embedded in one-parameter families of one-dimensional maps:

Example 1.2.39 (saddle-node bifurcation) Let f� : R1 ! R
1 be an other-

wise generic map whose derivative satis�es f 00(0) = 1: e.g., x 7! x + (� � x2).
Then the bifurcation at � = 0 , in which two stable equilibria are created, is
called a saddle node bifurcation. For � < 0 there are no �xed points for f . As
� increases through zero, a pair of hyperbolic �xed points of opposite stability
branches out from the origin.

Example 1.2.40 (pitchfork bifurcation) Although the saddle-node bifurca-
tion is the generic one-parameter bifurcation for f 00(0) = 1, other bifurcations
are possible under speci�c restrictions on the class of maps considered. For in-
stance, assume that f : R1 ! R

1 is generic in the class of maps which is invariant
under the symmetry transformation x 7! �x: e.g., x 7! x + (�x � x3). Then,
by symmetry, the origin must be a �xed point for all �. In this case, there is a
pitchfork bifurcation at � = 0. For � < 0, the origin is an isolated hyperbolic
�xed point. As � increases through zero, the origin changes stability and simul-
taneously sheds two �xed points, each acquiring the stability type the origin had
for � negative.

Example 1.2.41 (period-doubling bifurcation) Let f� : R1 ! R
1 be a

generic map whose derivative satis�es f 00(0) = �1: e.g., x 7! �x � �x + x3.
Then the bifurcation at � = 0 is called a period-doubling bifurcation, since a
period two orbit is created. For � < 0 there is an isolated hyperbolic �xed point
at the origin. As � increases through zero, the origin changes stability and a
period two orbit branches away from the origin.

Remark 1.2.42 The three examples above may come in di�erent avors: for
example, the signs of the nonlinear terms may di�er. Also, these examples
are not con�ned to bifurcations of one-dimensional maps. Arbitrary maps can
exhibit, e.g., a saddle-node bifurcation. This theory involves the construction of
one-dimensional center manifolds, which capture the bifurcating orbits. See, for
example, the introductory texts [153, 76, 9, 34].
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Exercise 1.2.43 Given the three bifurcations of �xed points presented above,
explain via Poincar�e maps what happens to a periodic orbit in a ow which
undergoes a saddle-node, pitchfork, or period-doubling bifurcation. Then, re-
consider the statement at the beginning of this chapter, that a period-doubled
orbit in a three-dimensional ow gives rise to a 2-cable of the knot.

Examples 1.2.39 and 1.2.41 are codimension one bifurcations: they occur
stably for generic one-parameter families of maps. (In the absence of symme-
try, the pitchfork bifurcation of Example 1.2.40 is of codimension two, since two
conditions, one on the eigenvalue and one on the quadratic term (that it van-
ishes), must simultaneously be met.) There is a third important codimension
one bifurcation:

Example 1.2.44 (Hopf bifurcation) The Hopf bifurcation for a periodic or-
bit involves a complex conjugate pair of eigenvalues for the linearized Poincar�e
map and thus can occur only for maps of dimension two or greater. The trun-
cated normal form, analogous to the one-dimensional versions above, is most
naturally expressed in polar coordinates:�

r

�

�
F�7!
�
r(1 + �� r2)
� + '+ br2

�
; (1.21)

the linearized mapping in cartesian form being

F� = (1 + �)

�
cos' � sin'
sin' cos'

�
: (1.22)

a matrix with eigenvalues �; � = (1 + �)e�i', which rotates by the angle ' and
dilates by the factor 1 + �. It is easy to check that, for � < 0, (1.21) has an
isolated hyperbolic sink at the origin, from which an attracting invariant circle
r =
p
� bifurcates as � increases through zero. On this circle, points are rigidly

rotated through the angle ' + b�. When this quantity is rational (mod 2�)
the invariant circle is �lled with periodic points; when irrational, with dense,
quasi-periodic orbits.

As the orbits created in a Hopf bifurcation lie on the boundary of a tubular
neighborhood of the periodic orbit (that is, a torus), any periodic orbits are
cables of the original knot: we return to this in Chapter 4.

When working with families of one-dimensional maps, the symbolic theory of
subshifts in x1.2.2 can be used e�ectively to encode sequences of bifurcations as
a parameter is varied. To do so, we must specify a coordinate system on symbol
sequences induced by the one-dimensional map. These coordinates foreshadow
a similar construct to be used for semiows on branched two-manifolds having
one-dimensional return maps. This kneading theory will be used in locating
periodic orbits and determining their topological properties in later chapters.

To introduce the ideas, consider the two hyperbolic (expanding) maps de�ned
on I = [0; 1] � R of Figure 1.15. In both cases a Markov partition may be based
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(a) (b)

Figure 1.15: One dimensional maps: (a) the doubling map, fD; (b) the tent
map, fT .

on the intervals I1 = [0; 1
2
] and I2 = [ 1

2
; 1], each of which is stretched across the

entire interval I by the map. Labeling the intervals x1 and x2 and appealing to
Theorem 1.2.23, we have a semiconjugacy6 between fD (resp. fT ) and a full shift
on two symbols, although here it is the one-sided shift working on semi-in�nite
sequences, since one can only iterate the maps forwards (cf. Remark 1.2.27).

Under these semiconjugacies, a point p 2 I belonging to a periodic orbit
of either map corresponds to a sequence formed of repeats of a �nite word
ap = (a0a1 : : : aK�1), of length K equal to the (least) period, in which the
symbol aj takes the value x1 (resp. x2) if f

j(p) 2 I1 (resp. I2). The itinerary
formed by repeating a word w will be denoted w1.

To locate points within an orbit, or points of distinct orbits, we introduce
the natural \left to right" lexicographical ordering x1 � x2. Here the two maps
reveal a crucial di�erence. Since fD is orientation-preserving (both branches
have positive slope), simple lexicographical ordering of the itineraries a1p and a1q
will correctly determine the relative positions of the points p; q 2 I . Essentially
here we are comparing binary expansions of p and q, with x1 and x2 playing the
roles of 0 and 1.

Example 1.2.45 Consider the points p = 1
3
and q = 3

7
, whose orbits under fD

are f 1
3
; 2
3
; 1
3
; 2
3
; : : :g and f 3

7
; 6
7
; 5
7
; 3
7
; 6
7
; 5
7
; : : :g respectively. The associated words

are: a1p = fx1x2x1x2 : : :g and a1q = fx1x2x2x1x2x2 : : :g. a1p and a1q �rst di�er
at the third symbol, and since x1 � x2, we see that a

1
p � a1q , as required.

Turning to the map fT , we note that orientation is reversed for points in I2.
To cope with this, we compare not simple itineraries, but invariant coordinates,
de�ned as �(a) = �1�2 : : : �n : : :, where �i = ai if the x2-parity of a1a2 : : : ai�1

6
Here, the map is a semiconjugacy because points on the boundary I1 \ I2 =

1

2
admit two

distinct symbol sequences x2 (x1)
1

and x1 (x2)
1

(cf. the ambiguity in decimal representation

of reals). The maps from fD or fT to the full shift are conjugacies when restricted to the

periodic orbit set. One can also get semiconjugacies if the slope of the map is of absolute value

less than one: multiple orbits may share the same symbol sequence.
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is even, else �i = âi, where x̂2 = x1 and vice versa. Thus � keeps track of how
many visits to the orientation-reversing subinterval the orbit has made.

Example 1.2.46 Again take two points, but now belonging to periodic orbits
of fT : p =

2
5
and q = 2

7
. The associated words are again: a1p = (x1x2)

1
and

a1q =
�
x1x

2
2

�1
, but the invariant coordinates are:

� (x1x2)
1

=
�
x1x

2
2x

2
1x2
�1

;

�
�
x1x

2
2

�1
=

�
x1x2x

2
1x2x1

�1
:

We now correctly have �(a1q ) � �(a1p ).

Thus, extending the de�nition of � appropriately for general multi-branch
maps to count the number of visits to orientation-reversing subintervals, we
have:

Proposition 1.2.47 (Milnor and Thurston [125]) Let p and q be points on I

corresponding to words a1p and a1q respectively. Then p < q , �(a1p ) � �(a1q ).

We have described the theory for the special cases of piecewise linear maps,
but it applies equally well to nonlinear maps; in fact one does not even need the
slope to exceed 1 everywhere. If the slope does exceed one on each branch (the
map is hyperbolic or expansive), and the subintervals Ij are pairwise disjoint,
then the semiconjugacy referred to above becomes a conjugacy.

We call a word a minimal if the invariant coordinate of w is minimal with
respect to� in the invariant coordinates of the shift equivalence class, i.e., �(a) �
�(�i(a));8i. In the kneading theory of one dimensional maps, the minimal word
is also called the itinerary of the orbit. We now briey review some ideas from
this area; for details see [39].

That portion of one-dimensional kneading theory with which we will be con-
cerned seeks to order points on the interval with respect to symbol sequences
(as in Proposition 1.2.47) and also to explicitly determine bifurcation sequences
for unimodal maps of the type illustrated in Figure 1.16, the canonical example
of which is the quadratic family:

f� : x 7! �� x2: (1.23)

Upon increasing �, the nonwandering set of f� changes from being empty for
� < � 1

4
, to having a one-dimensional analogue of a hyperbolic horseshoe for � >

2. This sequence of bifurcations involves numerous period-doubling and saddle-
node bifurcations in an order which displays self-similarity: see [41, 198, 199].
Note that, for � = 2, a homeomorphism on the interval [�2; 2] takes f� into fT
[181], cf. [76, x5.6].

The range of the map f� is determined by the orbit of the critical point c,
which essentially determines the dynamics of the map. We assign to each peri-
odic orbit of f� a word which allows us to order bifurcations, much as itineraries
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(e)(d)(c)(b)(a)

Figure 1.16: Members of the quadratic family f�: (a) � < � 1
4
; (b) � = � 1

4
; (c)

� 2 (� 1
4
; 2); (d) � = 2; (e) � > 2.

and invariant coordinates permit the ordering of points on the interval I . In-
tuitively, this word, the kneading invariant �(a), is the itinerary of the critical
point c for the �-value at which a point on the orbit a crosses over c. There
are some technicalities regarding which orbits actually contain points that cross
c and whether they can be given an associated invariant. These details are
unwieldy and largely unnecessary for our purposes: the diligent reader should
consult [39, 41, 90].

Given a word a = a1a2 : : : an (with n � 3) one can associate such a sequence
given by

�(a) = �(x1x2 (a1a2 : : : an�2cx2)
1
); (1.24)

where c = x2 if the x2-parity of a1a2 : : : an�2 is even and c = x1 if it is odd.
The two period one orbits have kneading invariant �(x1) = �(x2) = x11 and the
single period two orbit has �(x1x2) = (x1x2)

1
.

The important fact concerning kneading invariants and bifurcations of f� is:

Proposition 1.2.48 (Milnor and Thurston [125]) Let a1p and a1q be the mini-
mal words for periodic orbits of f� and let �p; �q be the �-values at which these
periodic orbits are created. Then, with � as before, �(ap) � �(aq)) �p < �q.

Thus, for the quadratic map f�, we may completely characterise \which comes
�rst" in the orbit genealogy. As above, the theory works for a more general class
of unimodal maps than f�, the main requirement being that the maps have neg-
ative Schwarzian derivative [163, 39, 76], implying that, for each �, there is at
most one stable periodic orbit.

We have now sketched the requisite background material. In the chapters
that follow, we will demonstrate how ideas from knots and links and dynamical
systems theory can be drawn together. In doing so, we will be able both to
answer questions in dynamical systems and bifurcation theory, and to discover
new phenomena in low-dimensional topology.



Chapter 2: Templates

We now proceed with our program to investigate the link of periodic orbits in
a three-dimensional ow. In this chapter, we blend the two themes of Chapter
1, the study of knots, and the study of hyperbolic dynamics, to create a tool
for analyzing knotted orbits of hyperbolic ows: the template. This important
tool, whose origins lie within the work of R. F. Williams [192, 193], will be our
primary instrument for examining periodic orbit links.

In x2.1 we review the natural role of branched one-manifolds as attractors,
foreshadowing the concept of a template. In x2.2, we give a thorough treatment
of the Template Theorem of Birman and Williams [24] and then apply this the-
orem in x2.3 to a variety of important three-dimensional ows. Finally, in x2.4,
we construct a set of symbolic tools for describing and manipulating templates
and the orbits that they carry.

First, we consider the example which motivated much of this work (cf. [193,
p. 111]):

Example 2.0.1 Given a three dimensional ow, our main goal is to determine
relationships between the link of periodic orbits (as a topological object) and
the dynamics and bifurcations of the system. To proceed, we must be able to
ascertain which types of knots and links a given ow supports. For a su�ciently
complicated ow (e.g., on a basic set of dimension two), there exist a countable
in�nity of periodic orbits which �ll up an attractor densely. In this case, even
visualizing the ow may be a challenge.

The following set of ordinary di�erential equations (ODEs) is known as the
Lorenz system [114]:

_x = 10(y � x)
_y = 28x� y � xz (2.1)

_z = �8
3
z + xy;

A numerical integration of the system suggests an attractor : all orbits appear
to collapse quickly onto a particular subset L � R3, called the Lorenz attractor.
The structure of this attractor is unusual: it appears to be two-dimensional, yet
is not a manifold. Rather, the attractor L (illustrated in Figure 2.1) resembles
a branched two-manifold. Nevertheless, as Lorenz realized at the outset [114], it
has in�nitely many sheets.

If we wish to understand the periodic orbits of this system, we need only
consider those orbits which live on L, since all other orbits appear to converge
to L, and hence none of them can be periodic. Thus, heuristically, we can reduce

33
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Figure 2.1: The Lorenz attractor (computed via DsTool).

the dimension of our problem by one: we need only consider knotted orbits on a
branched two-manifold. A template is just such a branched two-manifold which
\supports" the periodic orbits of a ow. The theory of templates, which we treat
in this chapter, is a rigorous method for applying this idea to general hyperbolic
ows on three-manifolds.

2.1 Branched manifolds and attractors

In order to motivate the Template Theorem of Section x2.2, we briey describe
the role of branched manifolds as attractors for hyperbolic systems. We begin
with a discussion of branched one-manifolds in the dynamics of two-dimensional
maps before considering the role of branched two-manifolds, or templates, in the
dynamics of three-dimensional ows.

De�nition 2.1.1 A branched one-manifold is a topological space built locally
from a �nite number of branch point charts, as illustrated in Figure 2.2(a). Each
chart has a �nite number (� 1) of arcs emanating from a branch point along
both sides of a common tangent.

Example 2.1.2 The branched one-manifold of Figure 2.2(b) is known as the
Plykin branched manifold, �P .

Branched one-manifolds are a key tool for understanding expanding attractors
for 2-dimensional maps.
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(a) (b)

Figure 2.2: (a) a branch point chart for a branched one-manifold; (b) the Plykin
branched manifold, �P .

De�nition 2.1.3 For f :M !M a di�eomorphism, a set � �M is an attractor
if there exists a compact set N � M such that � = \1k=0fk(N) and � is
contained in the chain-recurrent set R(f). If f j� has a hyperbolic structure,
then � is a hyperbolic attractor. Finally, � is an expanding attractor if it
is hyperbolic and has topological dimension equal to the dimension of Eu, the
unstable bundle.

Williams [192] considered the relationship between expanding attractors and
branched manifolds (in any dimension). For two-dimensional maps, the theory
boils down to the following:

Theorem 2.1.4 (Williams [192]) Let f : M ! M be a di�eomorphism on a
two-manifold M with � � M an expanding attractor. Then, there exists an
embedded branched one-manifold � � M and a noninvertible map g : � ! �
such that f j� is conjugate to the shift map on the inverse limit of (�; g).

De�nition 2.1.5 Given a map g : X ! X , the inverse limit,
lim (X; g), is given

as the space of all bi-in�nite sequences (: : : ; x�1; x0; x1; : : :), with g(xk) = xk+1.

The shift map associated to
lim (X; g) takes each xk to xk+1.

The structure of the expanding attractor � in Theorem 2.1.4 is complicated
| it is locally the product of R1 with a Cantor set [192]. However, the map
g : �! � is more tractable: e.g., the edges of � form a Markov partition for g.
To understand the idea behind Theorem 2.1.4, and to provide an analogue for
the Template Theorem of x2.2, consider the following:

Example 2.1.6 Construct a map fP : R2 ! R
2 which has the action illustrated

in Figure 2.3(a). There is a compact region N � R
2 with three holes, each

containing a source, and an additional source at \in�nity." N is foliated by line
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segments and the action of fP takes N into itself, respecting the foliation and
contracting each segment by a uniform amount. Hence, the segments are stable
manifolds of fP .

N

�P

fP

gP

a

b c
d

Figure 2.3: (a) The map fP acting on N � R
2 yields the Plykin attractor; (b)

The induced map on �P .

The attractor, �P , is given as \kfkP (N) and is locally the product of a Can-
tor set with a one-dimensional local unstable manifold; since �P has topological
dimension one (it has empty interior in R2 yet containsW u

loc(x)), it is an expand-
ing attractor. This attractor is called the Plykin attractor after [144]. To realize
the associated branched one-manifold, collapse each component ofW s(x)\N to
a point. Since fP respects the foliation by stable manifolds, the induced map on
the branched one-manifold, gP , is well-de�ned. It is obvious from Figure 2.3(a)
that the branched one-manifold is precisely the Plykin branched one-manifold
�P of Example 2.1.2. The dynamics of fP is captured by the induced map gP
which acts on �P as indicated in Figure 2.3(b).

Exercise 2.1.7 Construct the subshift of �nite type associated with the Plykin
attractor.

Example 2.1.6 is central to the theme of this chapter: under certain hyperbolicity
conditions, Theorem 2.1.4 guarantees that an invariant set for a di�eomorphism
on a two-manifold can be \replaced" by a non-invertible map on a branched
one-manifold, preserving the essential dynamics. Furthermore, note that, in
particular, periodic orbits of the di�eomorphism are treated with respect |
they are isotoped along the stable foliation. If we suspend the Plykin map fP
and embed the ow in R3, periodic orbits become knots and links. The action of
collapsing a stable foliation necessarily preserves individual knot and link types.

We will repeat this theme in the next section, substituting a three-dimensional
ow for a two-dimensional di�eomorphism, and branched two-manifolds with
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semiows for branched one-manifolds with non-invertible maps. We will take
the construction a step further in that we do not merely consider \attractors"
in three dimensions.

Remark 2.1.8 There is a great deal more to the story of branched manifolds
and expanding attractors. In [192], it is shown that an expanding attractor
for a di�eomorphism on an n + 1-manifold is cojugate to the inverse limit of a
di�eomorphism on a branched n-manifold, the higher-dimensional analogue of
the branched one-manifolds. Several authors have extended or related results
in dimensions one (see the literature on train tracks) and two (see the work of
Christy [37]).

2.2 Templates and the Template Theorem

We now consider an appropriate generalization of the branched one-manifolds
of x2.1 for three-dimensional ows, such as that associated with the Lorenz
attractor of Example 2.0.1.

De�nition 2.2.1 A template is a compact branched two-manifold with bound-
ary and smooth expansive semiow built locally from two types of charts: joining
and splitting. Each chart, as illustrated in Figure 2.4, carries a semiow, endow-
ing the template with an expanding semiow, and the gluing maps between
charts must respect the semiow and act linearly on the edges.

(a) (b)

Figure 2.4: (a) a joining chart; (b) a splitting chart.
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De�nition 2.2.2 Consider a owbox I�I having semiow given by translation
in the second coordinate. We de�ne a joining chart as the quotient space ((I �
I) [ (I � I))=

�
(x; y) = (x; y) : y � 1

2

	
with the associated semiow. Similarly,

a splitting chart is de�ned as I � I minus the set
�
(x; y) : x 2 ( 1

3
; 2
3
); y 2 [0; 1

2
)
	
.

The joining chart of Figure 2.4(a) contains two incoming strips and one out-
going strip, all of which meet tangentially at the branch line. The splitting
chart of Figure 2.4(b) turns one incoming strip into two outgoing strips as pic-
tured. One builds a template by connecting the free ends of the outgoing strips
to the free ends of the incoming strips between charts in a manner to be speci-
�ed. Since the template must be compact, there may be no \free" ends, and the
total number of charts and strips in a template must be �nite.

Each chart has an inherited semiow, by which we mean an irreversible ow
(an action of R+) | a true ow is impossible since reversing the ow just below
the branch line would violate uniqueness. The semiow is overowing in the
sense that on the splitting charts, there is a gap in the strip through which
the semiow \spills over." Since we are concerned with periodic orbits of the
semiow (i.e., knots), we ignore orbits exiting the template.

We also require that each gluing map connecting the free edge of an outgoing
strip to that of an incoming strip be linear. The semiow as constructed is thus
expansive in the sense that the noninvertible one-dimensional return maps for
the semiow induced by the branch lines are expansive maps (these return maps
are also piecewise linear and hence uniformly hyperbolic). This being the case,
the dynamics (up to conjugacy) are determined uniquely by the combinatorial
description of the template in terms of charts and strips: there is no ambiguity
in the semiow.

Remark 2.2.3 Given a template decomposed into joining and splitting charts,
we will often place it in a type of \normal form." For every splitting chart, there
is a gap through which the semiow overows. Propagate this gap backwards in
the semiow until it reaches a branch line in a joining chart: see Figure 2.5. In
this representation, each branch line has two incoming strips and k � 1 outgoing
strips. We will often represent templates in this form, with the understanding
that (after a small perturbation at the branch lines) they are actually built from
joining and splitting charts.

The relationship between templates and links of periodic orbits in three di-
mensional ows is expressed in the Template Theorem of Birman and Williams.
This important result is the primary tool for the remainer of this book.

Theorem 2.2.4 (The Template Theorem: Birman and Williams [24]) Given
a ow �t on a three-manifold M having a hyperbolic chain-recurrent set, the link
of periodic orbits L� is in bijective correspondence with the link of periodic orbits
LT on a particular embedded template T �M (with LT containing at most two
extraneous orbits). On any �nite sublink, this correspondence is via ambient
isotopy.
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Figure 2.5: By propagating gaps backwards, one obtains a normal form for a
template.

Although a proof of Theorem 2.2.4 appears in [24], we include a proof for
completeness, as the methods will be of use later.

Proof: LetR denote the chain-recurrent set of the ow �t onM . By Theorem
1.2.13, R decomposes into a �nite number of basic sets Bi. The proof depends
upon the dimension of each basic set B. Of course, if dim(B) = 0, there are no
periodic orbits and the result is trivially true. We treat the cases dim(B) = 1
and dim(B) > 1 in the following subsections:

2.2.1 Case 1: a Markov owbox neighborhood

Assume that dim(B) = 1. If we could construct a Poincar�e section to the ow
on B, then Bowen's theorem on subshifts of �nite type (Theorem 1.2.23) would
imply that B is conjugate to a suspended subshift of �nite type. Bowen [25] and
Bowen and Walters [28] have considered this situation, and have shown that
such a cross-section does exist, and can be taken to be a �nite union of disjoint
discs, f�igNi=1.

Our strategy (�rst used in [24]) is to use the properties of rectangles (Def-
inition 1.2.24) and Markov partitions (De�nition 1.2.25) to construct a special
neighborhood of B in M .

Step 1: rectangular rectangles

Let � � [i�i be a collection of embedded discs in M which forms the afore-
mentioned cross-section to B. By Theorem 1.2.23, � \ B is a Cantor set with
a Markov partition. Let 
 � [jRj be the rectangles of the Markov partition
(see De�nition 1.2.24), and let � : 
! 
 be the Poincar�e return map (a home-
omorphism). Note: since � \ B is a Cantor set, one may e�ectively ignore the
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rôle of \int" in De�nition 1.2.25. We wish to show that these rectangles may be
considered as the intersection of B with two-dimensional (literal) rectangles in
the coordinates de�ned by local stable and unstable manifolds.

Following [24, p. 14], for x 2 Rj choose the segment I
s(x) � W s

loc(x) such
that its boundary lies in Rj and such that it is the maximal such segment under
inclusion. Choose Iu(x) �W u

loc(x) likewise and consider the set

Gj =
[
x2Rj

Is(x) [ Iu(x): (2.2)

From De�nition 1.2.24, one can show that Rj � � is the cartesian product
W s(x;Rj) � W u(x;Rj). Hence, Gj is a rectangular \grid" bounding a two-
dimensional disc Hj which must be homeomorphic to I � I : a two-dimensional
\rectangle." We will refer to the discs Hj as handles [53], and denote their union
H .

Lemma 2.2.5 The handles Hj are pairwise disjoint.

Proof: Since we may re�ne the Markov partition 
 to have rectangles of ar-
bitrarily small diameter (see De�nition 1.2.25), it remains to show that the
rectangles Ri are separated (as sets) by a nonzero distance. However, since the
zero-dimensional sets Ri have no boundary in 
, every x 2 Ri is in its interior,
and must be bounded away from any other Rj by Condition 2 of De�nition
1.2.25 and the fact that rectangles are closed. 2

Step 2: the action of � on the handles
Extend the return map � to the handles H . Although not well-de�ned ev-

erywhere, � is still a homeomorphism on a neighborhood of 
 � H .

Lemma 2.2.6 If �(Hi) \Hj 6= ;, then �(Hi) stretches completely across Hj in
the unstable direction, and ��1(Hj) stretches completely across Hi in the stable
direction. Furthermore, �(Hi) \Hj has at most one connected component.

Proof: By Condition 3 of De�nition 1.2.25, �(W u(x;Ri)) � W u(�(x); Rj ) for
x 2 Ri. Reverse the ow direction to show the analogous result for stable man-
ifolds. Finally, assume that �(Hi) \Hj has two components. Then, for x 2 Hi,
�(Iu(x)) 6� Iu(�(x)), in violation of Condition 4 of De�nition 1.2.25. 2

Let A be the square matrix with each entry A(i; j) equal to the geometric
intersection number of �(Hi) with Hj . By Lemma 2.2.6, this number is either
zero or one, and A is the transition matrix for the Markov partition 
.
Step 3: a Markov owbox neighborhood

By owing the handles Hi forwards and backwards in time, we construct a
owbox neighborhoodN(B) for the handle set which appears as in Figure 2.6(a):
there are a �nite number of incoming and outgoing owboxes near each Hi.

Consider the transition matrix A: the ith row of A records which handles
Hi ows to. Thus, there are

P
j A(i; j) components of ��1(H)\Hi. By Lemma
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(a) (b)

Figure 2.6: A Markov owbox neighborhood of the zero-dimensional basic set.

2.2.6, each of these components stretches completely across Hi in the stable
direction. Hence, there are

P
j A(i; j) outgoing owboxes connected to Hi. By

reversing the time direction and applying the same argument, one shows that
there are

P
j A(j; i) incoming owboxes connected to Hi and stretching in the

unstable direction. Since � is a homeomorphism on 
 and 
 intersects the
boundary of each handle Hi, the ow boxes must \line-up" along the edges as
in Figure 2.6(a).

Finally, we enlarge the owbox neighborhood N(B) slightly to have the form
of Figure 2.6(b): a small perturbation is all that is required. This is done to �t
the joining and splitting chart requirements in De�nition 2.2.1.

Lemma 2.2.7 The periodic orbits of � are in bijective isotopic correspondence
with those in an embedded template T �M .

Proof: Given the Markov owbox neighborhood of N(B) constructed above,
one \crushes" a stable foliation as in Example 2.1.6 to obtain a branched man-
ifold. Speci�cally, form the quotient space given by identifying all points on
W s(x) \ N(B), for x 2 B. The e�ect of the collapse on the owbox neighbor-
hood is to take it to a collection of joining and splitting charts as per De�nition
2.2.1 and Figure 2.4. The collapsing procedure may be done smoothly, yielding
an ambient isotopy on �nite links of periodic orbits. 2

This completes the proof of Theorem 2.2.4 in the case of a one-dimensional
basic set. In this case, there are no \exceptional" orbits, as in the statement of
Theorem 2.2.4 | the knots and (�nite) links are in bijective isotopic correspon-
dence.

Remark 2.2.8 Let us reformulate what we have done in terms of the symbolic
dynamics. The ow restricted to the one-dimensional basic set B is conjugate
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to a suspended subshift of �nite type. That is, any orbit can be put in 1:1 cor-
respondence with a bi-in�nite symbol sequence in �A, where A is the transition
matrix for the subshift. In collapsing out the strong stable foliation, we are
identifying orbits which asymptotically converge in forwards time. This has the
e�ect of ignoring the past; hence, the template construction \chops o�" the left
half of every symbol sequence (the past), leaving a one-sided symbol sequence
(the future). In particular, periodic orbits, whose pasts and futures coincide, are
una�ected by this procedure. Orbits on a template can thus be put in bijective
correspondence with a one-sided subshift of �nite type (cf. Remark 1.2.27). We
will return to this idea and consider it carefully in Section 2.4.

Exercise 2.2.9 Describe what happens, topologically and symbolically, when
one collapses out an unstable foliation instead of a stable one. Does this al-
ways/necessarily yield the \same" template?

2.2.2 Case 2: the DA

Assume dim(B) > 1. We reduce this scenario to that of Case 1 by a procedure
known as the DA, or, derived from Anosov. This modi�cation to a ow is orig-
inally due to Smale [165], and has been explicitly described by Robinson [153],
Franks and Robinson [57, Appendix], and Williams [190]. Synonymous terms for
this construction include Smale surgery and orbit splitting. Our ultimate goal
is, as in Case 1, to collapse M by identifying orbits in a strong stable foliation.
But we cannot always do so directly:

Example 2.2.10 Let f : T 2 ! T 2 be the hyperbolic toral map of Example
1.2.7 and let �t be the suspension ow associated with f . This is a ow on
the compact three-manifold T 2 � I=(x; 0) � (f(x); 1), which is not T 3 since f
is not isotopic to the identity map. This ow has a hyperbolic chain-recurrent
set; however, the dimension of the [unique] basic set is three (recall that typical
orbits of f cover T 2 densely). If one nevertheless collapses each stable manifold
to a point, the resulting space is not a template. Recall from Example 1.2.7
that stable manifolds of points under f wind about on T 2 densely. This implies
that for the ow �t, the stable manifold of any point is arbitrarily close to
that of any other point; hence, collapsing stable manifolds for this ow yields a
non-Hausdor� space | certainly not the desired object.

The DA construction resolves this problem by �rst opening up a \hole" in
M and separating the invariant manifolds.

Assume dim(B) = 3, and consider a closed orbit  along with a small tubular
neighborhood N� � N�() of diameter �. We will modify the ow �t on N� as
follows. For each x 2 , let [es; eu; ec](x) be the coordinate frame based at the
point x spanning the stable, unstable, and center directions (this is uniquely
de�ned by the de�nition of hyperbolicity and by the Stable Manifold Theorem).
For su�ciently small �, the local planes spanned by es and eu foliate N� with
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meridional discs. Consider the vector �eld X , given by:

X(x) =

�
(xs; 0; 0) x = (xs; xu; xc) 2 N�

0 x =2 N�
: (2.3)

The DA ow, �DAt , is de�ned to be the ow generated by the vector �eld

d�DA

dt
=
d�

dt
+ �X; (2.4)

for some � > 0. The e�ect of adding �X is to \push out" the ow along the
local stable manifold of . For very small �, there is no qualitative change in
the ow. But for � larger than the contraction rate for the stable manifold of ,
the ow is altered .

Lemma 2.2.11 For appropriate choice of increasing �,  bifurcates from a
saddle-type orbit to a source along with one or two additional saddle-type or-
bits in a small tubular neighborhood of .

Proof: Consider a local cross section � for the ow, transverse to . Then,
for � = 0,  is a �xed point under the induced return map. Consider further
the cross section given by I = W s

loc() \ � for I su�ciently long: this induces
a hyperbolic return map r on the one-dimensional segment I . For � = 0, the
return map on I is a contraction by some factor 0 < � < 1 (cf. Theorem
1.2.9). Also, r may be orientation preserving or reversing, depending upon the
orientation of the stable bundle Es of .

Regard I as the interval [�1; 1] with the �xed point corresponding to  at the
origin. Then, for � = 0, the return map is conjugate to x! ��x, depending on
whether the map is orientation preserving (+) or reversing (�). Increasing � has
the e�ect of changing the map on a small neighborhood of the origin, increasing
the slope (in absolute value). At a certain �� > 0, there is a bifurcation when
the slope at 0 is �1 (cf. x1.2.3). When r is orientation preserving, a pitchfork
bifurcation occurs, since there is a symmetry x 7! �x imposed. In this case, two
new periodic orbits, 0 and 00, are created, each isotopic to  (though perhaps
linked). In the nonorientable case, a period-doubling bifurcation occurs, creating
a single orbit 0, isotopic to the twisted double of : see Figure 2.7. Each of the
new orbits 0 and 00 are of saddle-type, and  has become a source (as per the
description of x1.2.3). 2

Versions of the following proposition appear in [165, 153, 190, 57].1

Proposition 2.2.12 Let � denote the complement of W u() for the DA ow
�DAt on B. Then � is a hyperbolic expanding attractor.

Proof: By de�nition,

W u() =
[
t>0

�DAt (W u
loc()) ; (2.5)

1
The results are proved only for the case of the toral Anosov di�eomorphism of Example

1.2.7.
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Figure 2.7: Orbit splitting creates one or two new saddle-type orbits.

hence, �DAt (W u
loc()) � W u

loc() for t > 0 and the complement B nW u
loc() is a

positively invariant region for the ow. This implies that

� =
\
t>0

�DAt (M nW u
loc()) ; (2.6)

is an attractor. To show that � is hyperbolic, note �rst that from Equation (2.3),
stable manifolds are preserved by the construction (except that of , of course):
hence, the stable bundle Es on � under �DAt is precisely that of the original
ow �t. Although the DA perturbation to �t disrupts the unstable bundle, E

u,
it does so gently. To produce an unstable bundle on �, it su�ces to construct
cones in TMx, for x 2 �, whose sides are estimated from the e�ect of the DA
perturbation on the unstable bundle of the original ow �t. Upon iteration, these
cones converge to the new unstable bundle Eu. This is a procedure familiar to
dynamicists: accounts and examples appear in [135, 76].

To show that � is expanding (recalling De�nition 2.1.3), we �rst show that
the complement, W u(), is dense in B. Pick � 2 B. We claim that W s(�),
the strong stable manifold of � under �t, is dense in B. Since B is a basic set,
Theorem 1.2.23 states that there is a Markov partition for a cross-section of B
with a continuous surjection from the subshift of �nite type to the cross section
of B. Hence, using the same trick as in Exercise 1.2.30, we can construct a
symbolic stable manifold of � whose backwards orbit is dense in symbol-space.
Then, since the map to B is a surjection, the stable manifold is dense.

However, the DA perturbation leaves the stable bundle invariant, so the
stable manifold of � under �DAt is also dense in B. Choose x 2 � and Nx a
small neighborhood in B. Any y 2 Nx \W s(�) ows by �DAt arbitrarily close to
any point in B in backwards time; However, this implies that �DA�t (y) intersects
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W u() in the DA ow for t su�ciently large, since W u() contains a tubular
neighborhood of . Since W u() is invariant under the ow, y 2 W u(), which
is thus arbitrarily close to x 2 �.

As such, W u() is dense in the three-dimensional basic set B, so dim(�) � 2.
Consider the periodic orbit 0. Since it is not in W u(), it must be a subset of
�. Since � is an attractor, a small compact neighborhood N� can be chosen
which is forward invariant. Since 0 � �, it follows that W u

loc(
0) � N�. By

de�nition, � is the intersection of the forward ow of N�; thus, as the forward
ow of W u

loc(
0) is the invariant manifold W u(0), it follows that W u(0) � �.

Since W u
loc(

0) is of topological dimension two, so is �. 2

Lemma 2.2.13 With the exception of the additional orbits 0 and 00, the peri-
odic orbits of �t and those of �DAt are in bijective isotopic correspondence.

Proof: Let ��t denote the DA ow for a �xed tubular neighborhood N� of  with
diameter � > 0. Shrink � continuously and consider the 1-parameter family of
ows ��t as �! 0. For each su�ciently small � > 0, the invariant set �� is hyper-
bolic. Hence, all the DA ows on �� for (small) � > 0 are topologically conjugate,
and the 1-parameter family of homeomorphisms gives an isotopy between their
periodic orbit sets. Since the DA ow is a modi�cation of the original �t on the
tubular neighborhood N�, those periodic orbits which do not intersect N� are
identical, and hence isotopic. As �! 0, every periodic orbit of �t eventually falls
out of N� except , which is replaced in the DA by ; 0, and (if necessary) 00. 2

Remark 2.2.14 By performing a DA splitting along , we have created one or
two new orbits and reduced the topological dimension of our basic set to two.
It is remarkable that a small perturbation to an Anosov ow can reduce the
dimension of the basic set. One can picture this as follows: consider W u() for
the Anosov ow �t. This invariant manifold runs through M densely. After
the DA perturbation, the creation of a source and two orbits 0 and 00 may
be thought of as \splitting" what was W u() into a \thick" unstable manifold
bounded by W u(0) and W u(00). Thus, like thickening the rational points of
an interval to obtain a Cantor set in the complement, the complement of W u()
in the DA ow is an attractor which is locally the product of D2 � C, where C
is a Cantor set.

Remark 2.2.15 From the work of Williams on expanding attractors [192], it
follows that the attractor � is transitive: a basic set.

We may attain our goal of reducing the dimension of the basic set to one
by performing another splitting on another closed orbit. Suppose � is a basic
set of dimension two. Since � is two dimensional and hyperbolic and M three-
dimensional, the stable, unstable, and center bundles must each be of dimension
one. Since � must contain the center bundle, it must also contain either the
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stable or unstable bundle, leaving only the remaining direction. Hence, � is
either an attractor or a repellor.

Assume � is a repellor (this is the opposite of what one obtains from a DA
on a three-dimensional basic set, but one may reverse time and so obtain a
repellor). Then, as before, choose a closed orbit ̂ (if applicable, one of the
\new" orbits obtained from the DA would do nicely) and modify the ow on a
small neighborhood as in Equations (2.3) and (2.4). As before, this creates one
or two new saddle-type orbits in the new basic set, ̂0 and ̂00, while changing ̂
to a source.

Let �̂ denote the complement of W u(̂) in �. The arguments of Proposition
2.2.12 carry over almost verbatim to show that �̂ is a basic set of dimension one.
The steps proceed as follows, with details as in Proposition 2.2.12:

1. �̂ is hyperbolic: orbit splitting leaves stable bundles invariant | estimate
unstable bundles via cones.

2. W u(̂) is dense in �̂: arguing as in Proposition 2.2.12.

3. dim �̂ = 1: since W u(̂) is dense in the two-dimensional �, dim �̂ � 1,
but �̂ contains one-dimensional owlines.

Also, as in Lemma 2.2.13, the periodic orbit set is unchanged except for the
additional orbits ̂0 and ̂00 since we modify the ow on an arbitrarily small
neighborhood of an orbit.

Proof of Theorem 2.2.4: After at most two orbit splittings, one may reduce
the basic set B to the one-dimensional Case (1); then, by collapsing out a strong
stable foliation, the desired template is obtained. 2

Remark 2.2.16 In the case of the orbit splitting involved in the DA construc-
tion, one begins with a knot  and replaces it with either two isotopic copies
of itself (perhaps linked), or with a \doubled" knot (perhaps twisted). Since
there are at most two orbit splittings, there are at most two extraneous knots
in the template which do not correspond to closed orbits in the original ow.
Note, however, that any closed orbit is suitable for splitting; di�erent choices
may yield ostensibly di�erent templates.

Remark 2.2.17 A version of Theorem 2.2.4 in higher dimensions would be
desirable. There are impassable obstructions to this, not the least of which is
the fact that knotting and linking of orbits in dimensions higher than three is
nonexistant. In addition, the orbit-splitting procedure is more dramatic in higher
dimensions, where, instead of creating one or two additional orbits (an S1 bundle
over S0), an entire S1 bundle over Sk is created in dimension k + 3. Of course,
under unusual circumstances, a high-dimensional ow contains global strongly
contracting directions which allow one to �rst reduce to a three-dimensional ow
and then proceed as usual; however, the original ow is not then essentially high
dimensional.
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Remark 2.2.18 Several authors have used branched two-manifolds of a slightly
di�erent form than the templates of this chapter { these are closed (boundaryless)
branched two-manifolds. The de�nition in terms of charts is slightly di�erent
(see [192, 37]), but a closed branched two-manifold can usually be transformed
into a template via splitting along a �nite number of orbits. These branched
manifolds have been used to characterize hyperbolic attractors in ows [192, 37]
as well as to capture incompressible surfaces in three-manifolds [82, 48, 61].

2.3 Examples and applications

In this section, we present a collection of examples of templates, along with
typical situations in which one may use templates to capture the periodic orbits
in a ow or a portion of a ow. The following subsections include a variety of
topics, from ODEs to �bred 3-manifolds to time series. Though we will refer
back to several of these examples in subsequent chapters, the reader may skip
or skim the following without serious loss of continuity.

2.3.1 The Lorenz-like templates

Example 2.3.1 (Lorenz-like templates) The simplest examples of templates
are those formed from a single branch line chart with two strips: the Lorenz-like
templates. For m;n 2 Z, denote by L(m;n) the template pictured in Fig-
ure 2.8(a). The two unknotted, unlinked strips have m and n signed half-twists
respectively.

nm

(a) (b) (c)

Figure 2.8: (a) The Lorenz-like template L(m;n); (b) the Lorenz template
L(0; 0); (c) the horseshoe template L(0; 1) = H.

Example 2.3.2 The Lorenz template, L(0; 0), is pictured in Figure 2.8(b). This
template is an idealization of the attractor for Equation (2.1) in Example 2.0.1.
The link of periodic orbits supported on L(0; 0) has a number of interesting prop-
erties, as shown by Birman and Williams [23]. We list some of these properties
here and refer the reader to [23] and [195] for proofs.
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Theorem 2.3.3 (Birman and Williams [23], Williams, [195]) Let L be a link of
� � 1 components on L(0; 0). Then L is a positive braid and also a �bred link
(see De�nition 2.3.10). Every component of L is prime. Every torus knot lives
on L(0; 0).

Example 2.3.4 (the horseshoe template) The horseshoe template, H, is
isotopic to the Lorenz-like template L(0; 1) of Example 2.3.1. However, the
method of obtaining this template from Smale's horseshoe map (Example 1.2.28)
is crucial.

Recall from Example 1.2.28 that the standard horseshoe map f acts on a
square I2 � R2, depicted in Figure 2.9. Suspending f yields a ow on a mapping
torus I2�S1. Embedding this ow into R3 in the \standard" way (no additional
twists) yields a well-de�ned suspension ow as depicted in Figure 2.9. Since f
is hyperbolic, the conditions of Theorem 2.2.4 are satis�ed and we may obtain
a template, H.

identify

Figure 2.9: The embedded suspension of the Smale horseshoe map may be col-
lapsed to form the horseshoe template H.

The map f has stable (contracting) and unstable (expanding) foliations
whose leaves are horizontal and vertical lines respectively. To obtain a tem-
plate, we need merely collapse each leaf of the stable (or unstable, if we reverse
time) foliation to a point. This appears in Figure 2.9 also, where the resulting
template H is seen to be isotopic to the Lorenz-like template L(0; 1).

Holmes and Williams [93] and Holmes [88, 90] have made extensive studies of
which types of knots live on the templateH: see [70] for a review. We will use the
horseshoe template in Chapter 4 to derive more general results for bifurcations
in ODEs. In contrast to Theorem 2.3.3, the following proposition will be proved
in x4.2 concerning knots on H:

Proposition 2.3.5 (Holmes and Williams [93]) The horseshoe template H con-
tains no (p; q) torus knots for which p < 3q=2 (or, equivalently, q < 3p=2).
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In general, little is known about which knots live on the Lorenz-like templates
for arbitrary m;n | even for such a simple family as torus knots. But perhaps
knowing something about which knots live on some L(m;n) gives information
about the existence of this knot on other Lorenz-like templates.

Problem 2.3.6 For which pairs of integers (m;n) and (m0; n0) is it true that
any knot which lives on L(m;n) must also live on L(m0; n0)?

Sullivan [168] has given a partial answer to this question. We will return to
Problem 2.3.6 and �ll in some of the gaps later in x3.2 and x3.3.

2.3.2 Nonlinear oscillators, horseshoes, and H�enon maps

In this and the following subsection, we indicate how hyperbolic sets and tem-
plates such as those introduced above arise in some speci�c classes of ows and
maps.

Versions of the Smale horseshoe (Example 1.2.28) can appear naturally in
periodically forced oscillators of the form

�x = f(x; _x; t) ; f(x; _x; t) = f(x; _x; t+ T ); (2.7)

for �xed T > 0. Letting _x = y, t = �, and regarding � as an element of
S1 = R

1=TZ, we may rewrite (2.7) as a vector �eld on a two-manifold cross S1:

_x = y

_y = f(x; y; �) (2.8)

_� = 1:

Example 2.3.7 We give two examples of forced oscillators as per Equation
(2.8): the Du�ng equation,

_x = y

_y = x� x3 � �y +  cos!� (x; y; �) 2 R1 � R1 � S1 (2.9)

_� = 1;

and the forced, damped pendulum,

_� = v

_v = � sin�� �v + 0 + 1 cos!� (�; v; �) 2 S1 � R1 � S1 (2.10)

_� = 1:

Here, �; ; !, etc. are parameters which may be varied externally to induce bifur-
cations in the ows. These and other examples arise in physics and engineering
as models of mechanical and electrical devices (e.g., [137, 4]). In the case of
Equation (2.9), uniformly bounded solutions such as periodic orbits live within
a compact region D2 � S1 of the phase space; in the case of Equation (2.10),
the appropriate region is S1 � I1 � S1 = A� S1, where A denotes the annulus.
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In general, a global cross section � = f(x; y; �) : � = 0g exists on which the ow
of (2.8) induces a Poincar�e map, P . For both equations (2.9) and (2.10), with
positive damping � > 0,

detDP = exp

 Z T

0

trace [Jacobian(P )] dt

!
= e��T ; (2.11)

so P uniformly contracts areas, and there is a compact trapping region (D2 or
A, in these cases) into which all orbits eventually enter and thereafter remain,
and which contains the attractor. See, for example, [76, 85]. For speci�c ODEs,
such as those above, for small damping (�) and forcing (), certain perturbation
methods, pioneered by Melnikov [120], may be used to prove the existence of
transverse homoclinic orbits to a hyperbolic periodic orbit: see Figure 2.10(a)
and [76]. Then, by Theorem 1.2.33, there exists a Smale horseshoe within the
return map. More precisely, some iterate PN of P contains a full shift on two
symbols. In the simplest case, N = 1, and, as indicated in Figure 2.10(b), for
the Du�ng equation, we have precisely the suspension of the horseshoe given in
Figure 2.9. More complicated embeddings of the horseshoe template within a
forced oscillator are, of course, abundant in cases where N > 1.

(a) (b)

Figure 2.10: A Poincar�e map for the forced Du�ng equation; (a) invariant
manifolds; (b) the \simplest" horseshoe.

While properties of such Poincar�emaps, including the existence of homoclinic
orbits, can be proven, explicit expressions for these maps cannot be obtained.
Consequently, much in the spirit of Guckenheimer's and Williams's construc-
tion of a geometrical Lorenz attractor [77], H�enon, in 1976 [83], proposed a
polynomial mapping that models the behavior of the Smale horseshoe.2 This

2
He actually did this in connection with the Lorenz equation in a di�erent parameter regime

from (2.1).
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two-parameter family may be written

(x; y) 7! (y;��x+ �� y2): (2.12)

(A di�erent, albeit equivalent form appears in [83].) Observe that detDF = �

is constant, so that, for 0 < � < 1 the map preserves orientation and contracts
area uniformly, as do the Poincar�e maps discussed above. For � = 1, it preserves
area, and for � = 0, all orbits collapse in one iterate to the parabola y = �� x2,
after which their behavior is governed by the one-dimensional map

y 7! �� y2; (2.13)

mentioned in x1.2.3.
For large � [� >

�
5+2

p
5

4

�
(1 + j�j2) su�ces [42]], (2.12) contains a full shift

on two symbols, while for � < 1
4
(1 + �)2, the chain-recurrent set is empty. For

�xed � and increasing �, an in�nite sequence of bifurcations occurs in which
the horseshoe, with its countable set of periodic orbits, is created. The H�enon
map provides a useful model for horseshoe creation, to which we shall return
in x4.2. In fact, it has recently been shown that the H�enon map with small
� is present in an asymptotic limit for high iterates of all Poincar�e maps near
the (global) bifurcations in which homoclinic orbits are created in quadratic
tangencies [140, 131].

Due to the �rst component of the vector �eld (2.8), the maps considered
above preserve orientation and derive from, or lead naturally to, ows with
orbit crossings all of one sign, hence yielding positive templates. In the next
subsection, we introduce a class of ows which yield more general templates.

2.3.3 Shil'nikov connections

Recall the Poincar�e-Birkho�-Smale Theorem (Theorem 1.2.33), which we used
in Section 1.2.2 to embed horseshoe-like templates within a three-dimensional
ow containing a transverse homoclinic orbit to a periodic orbit. The next
family of examples we consider is derived from a similar theorem, due to L.
P. Shil'nikov, which proves the existence of suspended horseshoes near certain
types of homoclinic connections to a �xed point:

De�nition 2.3.8 A Shil'nikov connection for a ow �t on R
n (n � 3) is an

orbit � which satis�es the following two conditions:

1. � is homoclinic to a hyperbolic �xed point p, and � must be bounded away
from all other �xed points.

2. The linearization D�jp of the ow at p has leading eigenvalues f��s �
!i; �ug, with

�u > �s > 0 ! 6= 0: (2.14)

By \leading" is meant that any other eigenvalues have real parts outside
of the interval [��s; �u].
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(b)(a)

Figure 2.11: (a) A Shil'nikov connection in R3; (b) the Markov partition for a
suspended horseshoe.

Shil'nikov connections occur frequently in systems modeling physical phe-
nomena, such as ow through pipes [36], coupled oscillators [187], magnetocon-
vection [155], and electric circuits [38, 105]. The following theorem was �rst
proved by Shil'nikov [160, 161], with extensions and repetitions later in [179]
and elsewhere. A number of textbooks also contain these results along with
proofs [76, 188, 189].

Theorem 2.3.9 (L. P. Shil'nikov [161]) Let �t be a ow supporting a Shil'nikov
connection � to a �xed point p. Then, there exists a countable in�nity of sus-
pended Smale horseshoes in the ow in an arbitrarily small tubular neighborhood
of the homoclinic orbit �. Under a small C1 perturbation, �nitely many of these
horseshoes remain.

We give an outline of the proof of Theorem 2.3.9 in x4.4.2.
The entire ow near � does not satisfy the hyperbolicity requirements of

Theorem 2.2.4: moreover, there are numerous features of the dynamics and
(especially) bifurcations of ows near such orbits that are still poorly understood.
However, the individual horseshoes implied by Theorem 2.3.9 are hyperbolic, and
if, as in the previous subsection, we restrict our attention to any such subset of
the ow, we may employ Theorem 2.2.4 to obtain a template which captures a
portion of the ow, concluding that orbits on the embedded horseshoe templates
are in one-to-one isotopic correspondence with a proper subset of orbits in the
ow near �. This is our strategy for �nding templates within this class of ows.
The task, then, is to carefully track how the suspended horseshoes are embedded
within the ow.

The proof of Theorem 2.3.9 involves constructing Poincar�e sections transverse
to � near the �xed point p and linearizing the ow near p and along � to obtain
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approximate return maps. The horseshoes are constructed by owing pairs of
rectangles near p and then along �: see Figure 2.11.

Since these horseshoes are hyperbolic, we can keep track of their stable and
unstable foliations. By collapsing one set of these foliations and carefully follow-
ing the embedding, we construct an embedded template. First, we collapse the
ow near the �xed point p, yielding two strips which, due to the spiraling nature
of the ow, wind aboutW u(p) in N full twists before fusing at a branch line: see
Figure 2.12(a). Secondly, we follow the template along the unstable manifold
W u(p), twisting an unspeci�ed number of times along with the stable/unstable
bundles ofW u(p) before reconnecting: see Figure 2.12(b). (The number depends
upon the size of the neighborhood of p on which the local, almost-linear, map
is constructed: the neighborhood must be taken su�ciently small for various
cone estimates, necessary for hyperbolicity, to hold.) Assuming that W u(p) is
unknotted, this construction yields an embedding of the template obtained by
inserting a �nite number of half-twists in the horseshoe template L(0; 1) after
the branch line.

(a) (b)

Figure 2.12: (a) The template near the �xed point p; (b) global twisting along
the unstable manifold.

The fact that there are an indeterminate number of twists in the above
template is a di�culty: given a system containing a Shil'nikov connection, it is
known only that these templates exist in the ow for su�ciently large amounts
of twisting. We will address this later in x4.4, after developing more tools.

Despite the apparent indeterminacy of these templates, they exhibit several
interesting features. For example, all of the suspended horseshoes near the
homoclinic orbit are disjoint and link one another in various ways. In addition, a
number of extensions to Theorem 2.3.9 exist [179]: besides suspended horseshoes,
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there are also suspended full N -shifts for any N > 0. Hence, a variety of
complicated templates are embedded in these ows, which capture (portions
of) the periodic orbit set. Finally, when the vector �eld is symmetric or when
two-parameter families are considered, there is the possibility of a �xed point p
supporting a pair of Shil'nikov connections. Such a structure might appear as in
Figure 2.13(a). The appendix of [71] catalogues the possible templates in these
situations.

identify

(a) (b)

Figure 2.13: (a) A pair of Shil'nikov connections at p; (b) two templates corre-
sponding to coupled horseshoes near a pair of connections.

2.3.4 Fibred knots and links

Consider a thin knotted wire suspended in space through which passes an electric
current. On the complement of the knot, the current induces a magnetic �eld
which may have closed �eld lines. The way in which these closed curves entwine
the wire is intimately related to the knotting of the wire. This concept of an
induced �eld on the compliment of a knot is made mathematically precise by
the notion of a �bred knot.

A knot or link K in S3 is �bred if the complement S3 nK �bres over S1 with
�bre a Seifert spanning surface M [154, 33]. More speci�cally,

De�nition 2.3.10 A knot or link K is �bred if there exists an orientable surface
M with boundary @M = K and a homeomorphism � : M ! M such that the
complement S3 nK is homeomorphic to the quotient space (M� [0; 1])= � where
(x; 0) � (�(x); 1). The surface M is the Seifert spanning surface and the map
� is the monodromy.
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The simplest example of a �bred knot is the unknot, which has as �bre the
disc D2 and monodromy the identity map id : D2 ! D2. Figure 2.14 illustrates
the �bration of the complement in S3, where it is seen that a �bration is akin to
\blowing a bubble"M with bubble-ringK so as to �ll out all of the complement,
through the point at in�nity, returning to the initial con�guration. In Figure
2.14, each disc has the unknot as its boundary | we have cut open some of the
discs for visualization.

Figure 2.14: The �bration of the unknot complement by discs.

In �bring the complement in this manner, a ow is induced on S3 n K by
following a point onM as it is pushed through the complement. This is precisely
the suspension ow of the monodromy � embedded in S3 nK. The monodromy
� is thus a global return map for the ow, de�ned on the Seifert surface M ,
which completely captures the dynamics. Alternatively, there exists a map � :
S3 n K ! S1, called the �bration, which has as its �bre ��1(�) for � 2 S1

an embedded copy of M . Then the ow on the complement is precisely the
integration along the gradient of the �bration � : S3 nK ! S1.

Any periodic points of the monodromy � become periodic orbits of the sus-
pension ow which coil about the base knot K in a manner determined by the
�bration. The resulting collection of knots was dubbed, by Birman and Williams
[24], the planetary link for K with monodromy �: LK;�.

Since M is a surface and � a di�eomorphism, one may invoke the Nielsen-
Thurston classi�cation of surface di�eomorphisms [178, 46]:

Theorem 2.3.11 (Nielsen [138], Thurston [177]) A surface di�eomorphism � :
M !M is isotopic to a unique homeomorphism �̂ such that one of the following
holds:
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1. �̂ is periodic, i.e., �̂k = id for some k;

2. �̂ is pseudo-Anosov (see below); or

3. �̂ is reducible, i.e., there exists an invariant family C of disjoint simple
closed curves on M such that the restriction of � to the complement of C
decomposes into a �nite number of disjoint maps which are either periodic
or pseudo-Anosov.

We refer the reader to [46, 178] for precise de�nitions of pseudo-Anosov maps.
Such maps come with a pair of transverse measured stable and unstable fo-

liations, Fs and Fu, which uniformly contract and expand respectively under
iteration of the map. As such, these maps have a natural hyperbolic structure
associated to them and have \complicated" dynamics with a dense set of pe-
riodic orbits. The uniqueness portion of Theorem 2.3.11 allows one to specify
\the" �bration of K, and, hence, \the" planetary link of K, denoted LK . In
addition, a theorem of Asimov and Franks [13] implies that a pseudo-Anosov
map minimizes the dynamics within its homotopy class: the following fact is a
corollary.

Theorem 2.3.12 (Asimov and Franks [13]) If � is any monodromy associated
to a �bred knot (or link) K with unique pseudo-Anosov representative �̂, then
the link of planetary orbits LK � LK;�̂ is a proper sublink of LK;�.

Thus, we consider the unique link of planetary orbits LK as being the minimal
sublink which all monodromies ofK share. Birman and Williams [24] noted that
the link LK is an invariant for K which might provide interesting information.
In their study of planetary links, they carefully considered the �gure-eight knot
(see Figure 1.1(c)), which is �bred with �bre a punctured torus and monodromy
isotopic to the Anosov map of Example 1.2.7,

�̂ =

�
2 1
1 1

�
; (2.15)

acting on the universal cover R2 nZ2 [33, p. 73].
Because the pseudo-Anosov map �̂ satis�es the hyperbolicity requirements

of Theorem 2.2.4, it is possible to collapse the complement of the �gure-eight
knot down to a template. Birman and Williams, in [24], derive two templates
for the �bration of the complement of the �gure-eight knot (corresponding to �̂)
| one via direct visualization, and the other indirectly by means of branched
coverings of S3: we recall their templates in Figure 2.15.

Of course, since the map �̂ of Equation (2.15) is Anosov, the DA process
of x2.2.2 must be performed; hence, there may be two extraneous orbits on the
template not present in the original ow.

Simple �bred knots and links in S3 often (if not always) give rise to very
complicated templates supporting their planetary links. The Whitehead link,
LW , displayed in Figure 2.16, is a �bred link with pseudo-Anosov monodromy.
Using the techniques in [24], we have shown that the planetary link for LW is
supported on the template illustrated in Figure 2.17.
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Figure 2.15: The \direct" and \indirect" versions of the �gure-eight template.

2.3.5 Templates from time series

Finally, we consider a class of examples about which little is known rigorously,
but which may have important applications, particularly for experimentalists
seeking geometrical models of dynamical processes. Consider an experimental
measurement of a continuous scalar variable whose dynamical behavior is com-
plicated: e.g., a temperature reading, a chemical concentration, or a speed. The
data is received in the form of a time series: a function � : [0; T ]! R, where T
is the length of the data segment (in units of time).

Given a complicated time series, one would wish (among other things) to
extract the essentials of the underlying dynamics. For example, consider a typical
orbit of the Lorenz system (Equation (2.1)), and let �(t) denote the projection
of this orbit onto one of the coordinates (see Figure 2.18). Over long periods,
this might appear to be without coherent form; yet, given its origins, there is
certainly structure within the data. One is more suspicious of, say, the Dow
Jones average, hiding some covert pattern.

Typically, one employs a variety of means for accessing \hidden" dynamical
information within a time series: Fourier spectral content, statistical measures,
fractal dimensions, and other tools provide certain types of information, while
ignoring other, more geometric data. Fortunately, a theorem of Takens [175]
suggests that one can often embed an attractor into a low-dimensional manifold
via a \time delay" function, capturing the geometric and topological properties:

Theorem 2.3.13 (Takens [175]) Let M be a compact n-manifold with a C2-
ow �t and a C2-function � : M ! R

1. Then, generically, the time-delay
mapping � :M ! R

2n+1 de�ned by

�(x) = (�(x); �(�1(x)); �(�2(x)); : : : ; �(�2n(x))) (2.16)



58 chapter 2. templates

Figure 2.16: The Whitehead link LW .

is an embedding.

A topological perspective has been proposed by Mindlin, Solari, Gilmore,
Tu�llaro, et al. [128] (cf. [180]), in which knot and link types of periodic orbits
in the embedded ow are computed and related to a template. We outline the
procedure detailed in [128].

1. Given a \chaotic" time series �(t), extract a �nite collection of low-period
unstable periodic orbits, figN1 . This is done by examining \close returns"
within the data, which are assumed to wander back and forth among many
unstable periodic orbits. The low-period orbits are easiest to spot.

2. Map the time series into R3 via the (Takens) time-delay function, and
assume that it is an embedding. There are several ways to realize this via
di�erent \�lters" of the data. Clearly, this may not be possible in general:
for success, orbits must appear to lie on a topologically two-dimensional
attractor.

3. Consider the (small) collection fig of low-period unstable periodic orbits
computed in step (1). Embed these in R3 as per the embedding of step
(2). Calculate their knot types, linking numbers, and self-linking numbers
(i.e., twisting of the stable/unstable bundles). These form a basis for the
induced template.

4. Let T� denote the \simplest" template in R3 which contains the basis fig.
For example, if a global cross section to the ow exists, T� is a template
consisting of one branch line such that each i lives on T� and crosses the
branch line the same number of times as the period of i in the return map
of the ow. The knot types, linking numbers, and self-linking numbers tell
one how the strips of T�, each of which contains at least one i, are knotted,
linked, and twisted, respectively.
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Figure 2.17: The Whitehead template.

After producing the induced template T� for the data set �, one may now
proceed to verify that the template T� provides an accurate model of the dy-
namics. This can be done in a number of ways: e.g., �nd higher-period orbits in
the data set and con�rm that these live in T� with the appropriate embedding,
or take another data set, �0, and compute an induced template for this set.

When the induced template construction is successful, there are a number
of bene�ts both to the experimentalist and to the theorist hoping to model the
experiment from which it derives. First, an induced template o�ers a certain
degree of prediction | one may identify a periodic orbit in the template, then
go \hunting" for it in the data set. A successful example of this is documented
in [128]. Secondly, one may verify models of the system. Should one model the
experimental system with a set of ODEs, one takes a time series of the ODE
solution and constructs the induced template for this data set. If the induced
template for the model di�ers from the induced template for the experiment,
this may indicate a shortcoming in the model.

There are, however, serious questions concerning this approach. Experimen-
tal systems are rarely three-dimensional and hyperbolic; hence, the use of tem-
plates to model them is, at the very least, suspect. In addition, the only guiding
principal behind the choice of the induced template is Occam's Razor. As such,
it is not surprising that many of the induced templates computed in practice
are isotopic to the horseshoe template, L(0; 1), or its mirror image [128, 180]
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Figure 2.18: A time series derived from the Lorenz equations.

(though see [106] for an exception).

These doubts notwithstanding, there are numerous open questions about the
use of induced templates for time series, whose answers could be of great value
to experimentalists and modelers of complicated dynamics.

2.4 A symbolic language

Much of this book is concerned with templates and the links they carry. To
analyze these, it is often useful to extract subtemplates, or subsets which are
themselves templates (see De�nition 2.4.6). In the late eighties, one of us [MS]
noticed that the template V , illustrated in Figure 2.21 below, contains a sub-
template which is isotopic to itself: see Figure 2.22 (this was used to show the
existence of highly-composite knots on V [169]). In this section, we introduce
conventions for symbolic descriptions of orbits and templates, which enables us
to signi�cantly generalize this kind of procedure to cases in which direct visual-
ization is not possible.

2.4.1 Markov structures and symbolic coordinates

Recall from the proof of the Template Theorem in x2.2 that there is a natural
correspondence between orbits which remain on a template and one-sided symbol
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sequences in a subshift of �nite type: in particular, following upon Remark 2.2.8,
we have

Lemma 2.4.1 Given a template T , label the strips fxi : i = 1::Ng. Let AT be
an N�N matrix with entry AT (i; j) = 1 if the incoming portion of xi meets the
outgoing portion of xj at a branch line, zero otherwise. Then �T , the set of all
forward orbits which remain on T , is precisely the set of admissible sequences in
the subshift of �nite type given by AT .
Proof: See the proof of Theorem 2.2.4, or simply collapse T along the transverse
direction of the semiow, reducing T to an oriented graph. Then the orbits on
T are one-sided directed paths on this graph: cf. Remark 1.2.22. 2

The way in which orbits �t together on a template T is described by placing
a coordinate system on the branch lines f`j : j = 1::Mg, following the kneading
theory of x1.2.3, and specifying the induced coordinates on �T . This ordering
of orbits on a template is a key ingredient in discerning the relative placement
of orbits on a template which might be too complicated to visualize.

De�nition 2.4.2 Let T be a template with strips labeled fxigN1 . Denote by
f`jgM1 the branch lines of T (one for each branch line chart). Then �T is
partitioned into N branch segments, denoted f�i(T )gN1 , where

�i(T ) � fa = a0a1a2 : : : 2 �T : a0 = xig : (2.17)

Denote by �`j � �T the union of �i(T ) over all i such that the strip xi emanates
from the branch line `j . We will sometimes refer to the union of the �i(T ) as
the branch set, denoted �(T ).

Proposition 2.4.3 There exists a total ordering � on each �`j which respects
the topology of �`j : that is, if a�b and fang is a sequence converging to a then,
for su�ciently large n, an�b.

Proof: This follows from the kneading theory [125], as outlined in x1.2.3. We
construct � explicitly in what follows, and it will be seen to have the following
property: � is the total ordering induced by the one-dimensionality of `j . That
is, any point of an `j is an orbit which \begins" on `j . Orienting `j yields a total
order on �`j which respects the topology. 2

For the moment, assume T is an orientable template. Each branch line `j is
one-dimensional. Hence, the set of branch segments in each `j are ordered (up
to orientation of `j). If, for example, the branch segments x1; x2; : : : ; xp lie in `1
in this order, then choose � as either

x1 � x2 � : : : � xp; or xp � : : : � x2 � x1: (2.18)

Having chosen an orientation for each `j , one then orders each �`j lexicograph-
ically with respect to the ordering on the generators fxig. That is, given a and
b 2 �`j , let J equal the index of the �rst symbol in which a and b disagree:

J = min fj : aj 6= bjg : (2.19)
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Then a � b if aJ � bJ , else b � a. Of course, one cannot compare points in
di�erent �`j : there is no notion of orientation for points on disjoint branch lines.
Since T is orientable, the lexicographical ordering of itineraries corresponds to
the ordering on the branch lines and it yields a natural coordinate system.

For nonorientable templates, the issue is no more di�cult, but it does demand
more bookkeeping. If a particular strip, say xj , contains an odd number of half-
twists (i.e., the return map is orientation reversing on that interval), then one
must keep track of the parity of that symbol in using � as in the invariant
coordinate construction for the one-dimensional map fT of x1.2.3.

Speci�cally, given a nonorientable template T , construct a provisional order-
ing ~� as for an orientable template induced by the ordering on the individual
branch lines (as above). This ordering ~� does not, however give an ordering
on T which respects the topology of the branch lines. Now, given some pla-
nar presentation of T (a pictorial representation in which all the branch lines
lie within the plane), each strip xi will have �(xi) half-twists for some signed
integer �(xi). Partition the strips fxig according to those which are orientation
preserving (�(xi) even) and those which are orientation reversing (�(xi) odd).
Note that this partition depends on the choice of planar representation, and, in
practice, one wants to choose as simple a presentation as possible. Given points
a and b in �`j , de�ne J as in Equation (2.19), and consider the parity � 2 f0; 1g
which keeps track of orientation

� �
 
J�1X
i=0

�(ai)

!
mod 2: (2.20)

Then de�ne the ordering � on �`j in terms of the provisional ordering ~� by

� = 0 : a � b, a~�b

� = 1 : b � a, a~�b:

This ordering � reects the \physical" ordering of orbits on the nonorientable
template T . It is clear that this procedure can be easily implemented on a
computer.

Equipped with the ordering �, we can treat �T as being embedded in a
�nite disjoint union of one-dimensional segments (although �T is really a Cantor
set). As such, we will introduce some notation for branch segments. Recall from
De�nition 2.4.2 that �T partitions intoN branch segments, where �i(T ) denotes
all itineraries beginning with xi. Since this geometrically represents all orbits
which begin at the xi-strip, we will consider �i(T ) as a closed interval, reecting
the total ordering �:

De�nition 2.4.4 Given T a template with strips fxigN1 and branch set �(T ),
let the ith-left-boundary, @`i (T ), be the point of �i(T ) which is �-minimal. Sim-
ilarly, let the ith-right-boundary, @ri (T ) , be the point of �i(T ) which is �-
maximal. The boundary set, @(T ), is given as the union of f@`i (T ); @ri (T )g over
i.
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It is clear that @(T ) consists of the 2N eventually periodic orbits which together
comprise the boundary of the template.

Remark 2.4.5 In ows whose templates have a single branch line, correspond-
ing to a global cross section, it is natural to identify the period of a closed orbit
with the number of intersections with the branch line. Often, this coincides
with the number of strands in a closed braid representation. In the more general
context of the present work, we identify the period of an orbit with the number
of intersections of the orbit with all branch lines (hence, the period of the orbit
for the return map induced by the branch lines). In all cases it coincides with
the length of the periodically repeating block in the corresponding orbit word.
We will thus sometimes refer to this block length as the symbolic period.

For a given template T , the symbolic data; �T ; AT ; �(T ); @(T ), and �,
encode the dynamics and the combinatorial structure of the template. They do
not, however, specify the topology of the enclosed orbits, nor do they provide
invariants of the underlying link LT , since one may change the embedding of
T without altering the symbolic data. Conversely, we may re�ne the Markov
partition (i.e., increase the number of branch segments) without discarding any
orbits from the template: see Figure 2.19 for an example. Even so, these symbolic
tools do become useful in describing proper in�nite sublinks and in describing
the relative placement of complicated orbits.

Figure 2.19: Two templates which carry the same dynamics and topology on
the periodic orbits, but which have di�erent symbolic structures.

2.4.2 Subtemplates and template inations

In the study of templates and their properties, there are varying \scales" at which
one may choose to work. Often, the knowledge of which types of individual knots
or links appear on a given template is useful: this is a \small scale" question.
For example, in x4.2, we will see how careful bounds on the genus of individual
horseshoe knots can be used to derive uniqueness and bifurcation results in a
family of H�enon maps. On the other hand, one might ask \large scale" questions
about whether two entire templates (including all their orbits) are equivalent.
This perspective will come into play in Chapter 5. Here, however, we focus on
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a \medium" scale question: we examine subsets of orbits which are proper yet
non-�nite. These are described via the notion of subtemplates.

De�nitions and examples

De�nition 2.4.6 A subtemplate S of a template T , written S � T , is a topo-
logical subset of T which, equipped with the restriction of the semiow of T to
S, satis�es the de�nition of a template (De�nition 2.2.1).

A subtemplate is thus a compact branched submanifold with boundary, for which
the original semiow restricts to an expanding semiow.

Example 2.4.7 An example of a subtemplate of the Lorenz template is given
in Figure 2.20. When we \cut" along the boundaries of the subtemplate S �
L(0; 0), we can remove S and isotope it into the nice presentation of Fig-
ure 2.20(c). The move from part (b) to part (c) is one that we will encounter
often in the remainder of this work: it is the so-called belt trick, in which a curl
is exchanged for a full twist.

(a) (b)

(c)

Figure 2.20: (a) a subtemplate S within L(0; 0), (b) when removed from L(0; 0),
(c) is isotopic to L(0; 2).

Note that S is a very special subtemplate of L(0; 0) in that S is di�eomorphic
to L(0; 0) (it is in fact isotopic to L(0; 2) | recall Figure 2.8(a)). Although this
is not always the case, a di�eomorphic relationship between a template and a
subtemplate opens up a new set of objects.

De�nition 2.4.8 A template renormalization of a template T is a smooth em-
bedding R : T ,! T which respects orbits (i.e., it commutes with the semiow).
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It follows from De�nition 2.4.6 that the image of a template renormalization
R(T ) is a subtemplate of T which is di�eomorphic to T . Returning to Example
2.4.7, the subtemplate S � L(0; 0) is the image of a template renormalization
R : L(0; 0) ,! L(0; 0).

The terminology for De�nition 2.4.8 arises from the one-dimensional return
maps for a template induced by the branch lines [47]. The image of a template
renormalization is merely a renormalization of the return maps, suspended in
accordance with the template structure. We prefer, however, to think in terms of
renormalizing the branched two-manifold itself, since template renormalizations
carry with them the topology of the periodic orbits as well.

Since a template renormalization R acts on orbits of T di�eomorphically, R
maps periodic orbits to periodic orbits: hence, there is a topological action on the
underlying link LT . When this action is trivial, we say that the renormalization
is isotopic.

De�nition 2.4.9 Let R : T ,! T be a renormalization on an embedded tem-
plate T � S3 and let iT denote the inclusion of T into S3. If iT and iT �R are
isotopic embeddings of T in S3, then R is an isotopic renormalization.

The existence of a template renormalization immediately allows one to iterate
R on the renormalized subtemplate. This procedure enables one to extract very
\deep" subtemplates, which may contain signi�cant information about the peri-
odic orbit link. When the renormalization has trivial action on the topology of
the underlying periodic orbit link, we may iterate to obtain complicated subtem-
plates whose orbits have extremely long symbolic period, while still controlling
the individual knot and link types.

x1 x2

x3 x4

Figure 2.21: The template V .

Example 2.4.10 The �rst example of an isotopic template renormalization
(without that terminology) was given by M. Sullivan [169]. Let V denote the
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embedded template of Figure 2.21, having two branch lines with a total of four
strips, fx1; x2; x3; x4g. The template V is embedded such that none of its strips
are knotted or twisted, but note that it contains crossings of both positive and
negative types. The renormalization taking V into itself is illustrated in Fig-
ure 2.22, from which it is clear that the image is isotopic to the domain, for the
positive and negative twists produced by the belt trick exactly cancel.

Figure 2.22: An isotopic template renormalization on V .

Thus far, a template renormalization embeds a template within itself, and
any subtemplate which is di�eomorphic to its domain can be described by a
renormalization. However, a given template may contain numerous subtemplates
which are dynamically as well as topologically distinct from the original, just as
one-dimensional maps may contain di�erent maps embedded deep within. This
phenomenon in 1-d maps leads to the study of renormalizations between classes
of maps [73]. We wish to generalize template renormalizations in a similar
manner.

De�nition 2.4.11 A template ination is a smooth embedding R : S ,! T of a
template S into a template T which respects orbits (i.e., it commutes with the
semiow).

It follows from De�nition 2.4.6 that the image of a template ination R(S) is
a subtemplate of T . A template renormalization is a special form of a template
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ination, and we will often use the more general term. The analogous notion of
an isotopic template ination follows:

De�nition 2.4.12 Let R : S ,! T be an ination of a template S � S3 into a
template T � S3. Let iS and iT denote inclusion of S and T respectively into
S3. If iS and iT �R are isotopic embeddings of S in S3, then R is an isotopic
ination.

There are many basic questions about subtemplates and template inations,
e.g.:

Problem 2.4.13 Given a template T , which templates embed [abstractly] in
T (i.e., which are images of inations)? Given an embedded template T , what
are all the subtemplates of T (i.e., which are images of isotopic inations)?

We will obtain in x3.3 the surprising answer that all orientable templates em-
bed in any T (after a slight perturbation at the branch lines). Furthermore,
we will show that certain templates contain isotopic copies of all templates as
subtemplates.

The goal of working with template inations is to understand properties of
deep, complicated subtemplates within a given template. To that end, isotopic
inations are useful, in that we can keep track of the knots and links which
live \deep within" a template by pulling back the isotopy. To keep track of
where exactly these complicated subtemplates lie, we use the induced action
of an ination on the itinerary space in order to derive \coordinates" for a
subtemplate associated to a given ination.

Symbolic actions of inations

Lemma 2.4.14 A template ination R : S ,! T induces an embedding R :
�S ,! �T whose action is to inate each symbol fxi : i = 1::Mg of �S to a
�nite admissible word fwi = w1 : : : wn(i) : i = 1::Ng in the symbols of �T .

Proof: by De�nition 2.4.11, R maps the branch lines of S into branch lines of
T . Hence, each strip of S (corresponding to a generator xi of �S) is mapped to
a �nite sequence of strips in T , corresponding to a �nite admissible itinerary for
T . 2

The image under R of any orbit on S is thus obtained by \inating" each
symbol xi in the itinerary by the word wi (which in some cases may consist of
a single letter). This immediately implies the following useful result:

Corollary 2.4.15 Given R : S ,! T a template ination, the branch set and
the boundary of the subtemplate R(S) are given by

�i(R(S)) = R(�i(S)) = fR(a); a 2 �i(S)g
@(R(S)) = R(@(S)) = fR(a); a 2 @(S)g : (2.21)
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We wish to consider the branch set �(R(S)) as a set of \coordinates" consisting
of N \subintervals" of the branch set of T which indicate where S resides within
T . We note that the image of a branch segment under an ination is not an
interval in the sense that all orbits between its endpoints are not necessarily
part of the subtemplate (recall there are \gaps" in the branch lines). Yet, if we
consider the N subintervals given by �(R(S)), we have a relative measure of the
depth of an ination. For example, if a template T contains a nested sequence
of subtemplates Tn � : : : � T2 � T1 � T , then the same inclusion exists on the
branch sets �(Ti) within �(T ). Or, given two subtemplates of T , the information
encoded in their symbolic branch sets can be used to determine whether these
subtemplates are disjoint, or which subtemplate is \closer" (under �) to a given
periodic orbit.

Example 2.4.16 For an example which will demonstrate the symbolic actions
of an isotopic ination, we return to the isotopic renormalization of V from
Example 2.4.10. From Figure 2.22, one traces the image of the four strips
fx1; x2; x3; x4g to obtain the symbolic action:

D : V ,! V

8>><
>>:

x1 7! x1
x2 7! x1x2
x3 7! x3
x4 7! x3x4

: (2.22)

The branch segments of the subtemplate are given by

�1(D(V)) = D ([(x1)
1
; x1 (x2x4)

1
]) = [(x1)

1
; x1 (x1x2x3x4)

1
]

�2(D(V)) = D ([x2 (x3)
1
; (x2x4)

1
]) = [x1x2 (x3)

1
; (x1x2x3x4)

1
]

�3(D(V)) = D ([(x3)
1
; x3 (x4x2)

1
]) = [(x3)

1
; x3 (x3x4x1x2)

1
] (2.23)

�4(D(V)) = D ([x4 (x1)
1
; (x4x2)

1
]) = [x3x4 (x1)

1
; (x3x4x1x2)

1
] :

The boundary components of the subtemplate, @(D(V)), are given by the end-
points of the intervals above.

We encourage the reader to work through this example carefully, correlating
the geometric description of Figure 2.22 with the symbolic description of Equa-
tion (2.22). This procedure is used extensively in Chapter 3.

Unfortunately, one cannot endow the symbolic structure with very much
information about the topology of the in�nite link. However, the hyperbolicity
of the underlying ow does give a nice structure to the space �T which we hope
to utilize as much as possible. By looking at the ordering � and by considering
the relationship between iterated subtemplates and their \coordinates" in terms
of branch sets, we have a set of tools for describing and manipulating \deep"
sublinks of the link of periodic orbits. We will use these in the next chapter to
prove some basic, as well as some surprising, results.



Chapter 3: Template Theory

In this chapter, we use the tools of Chapter 2 to build a collection of general
results on templates and template links, noting applications to the dynamics
of three-dimensional ows along the way. We begin in x3.1 with a treatment
of properties of the individual knots and links which are supported on a given
embedded template. Then, in x3.2, we use the methods developed in x3.1 and the
previous chapter to prove the existence (and abundance) of universal templates:
templates which contain all knots and links among their closed orbits. In
x3.3, we continue this line of inquiry to examine the subtemplate problem: the
enumeration of all subtemplates of a given embedded template.

These results, which are fairly general in nature, will lead to numerous speci�c
conclusions in this and in subsequent chapters when applied to the examples
introduced in x2.3.

3.1 Knotted orbits on templates

Question 1 Given an embedded template T , does it contain a nontrivial knot?
How many such knots are present? How are these distributed?

In this section, we will answer Question 1, giving applications to the dynamics
of ows.

3.1.1 Alexander's Theorem for templates

In many of the results to follow, we will need to represent template knots and
links as closed braids. We begin with an analogue of braiding for templates:

De�nition 3.1.1 A template T is said to be braided if T is embedded inD2�S1
in such a way that every closed orbit on T is a closed braid: that is, each
meridional disc D2 � f�g intersects the curve transversely in a �xed number of
points. A template is said to be positive if it can be braided in such a way that
every closed orbit is a closed positive braid.

Recall Alexander's Theorem (Theorem 1.1.13), which states that any link is
isotopic to a closed braid. The corresponding statement for templates is also
true, as shown by Franks and Williams [58].

Theorem 3.1.2 (The Alexander Template Theorem: Franks andWilliams
[58]) Any template T may be isotoped so that it is a closed braided template.
Furthermore, if T is orientable, it may be arranged such that in a planar pro-
jection, all the strips of T are at (untwisted).

69
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The proof closely follows that of Alexander's Theorem for links [3]: a nice account
of the latter can be found in [33, Prop. 2.14]. In the proof of Alexander's
Theorem, one chooses a tenative braid axis, and then iteratively \ips" strands
of the link about the braid axis until they are all aligned. Here, instead of
wrapping strands about a braid axis, one manipulates strips. To obtain a at
presentation, one uses the belt trick of Example 2.4.7 to exchange a full twist for
an additional trip about the braid axis. Half twists, which arise in non-orientable
templates, of course cannot be straightened.

3.1.2 Concatenation of template knots

Given two periodic points of �`j { the set of all orbits starting on the branch
line `j { we wish to de�ne an \addition" operation which has both symbolic and
topological interpretations.

De�nition 3.1.3 Let a1 and b1 be distinct periodic points of �`j . Then the
concatenation of a1 and b1, denoted a1 � b1, is the point (ab)1 2 �`j .

Remark 3.1.4 The concatenation operation is well-de�ned: since a1 and b1

are both points on a particular branch line `j , the orbit (ab)
1

must be admis-
sible. Note, however, that ab may equal uk for k > 1 and some u, as in x21x2x1
concatenated with x1x2. In this case, we would say

�
x21x2x1

�1 � (x1x2)
1

=�
x21x2

�1
.

Given the concatenation operation, we wish to understand the topological action
on periodic orbits. We begin with a class of concatenations which behave nicely.

De�nition 3.1.5 Choose two distinct points u and v 2 �`j and assume that
u � v. De�ne (u;v) to be the set of all point x 2 �`j such that u � x � v.
Then u and v are said to be adjacent if,�

�ku
	
k>0
\ (u;v) =

�
�kv

	
k>0
\ (u;v) = ;: (3.1)

Thus, u and v are adjacent if no other points on their orbits appear between u
and v.

In order to simplify the next few results, we circumvent the exceptional cases
of Remark 3.1.4:

Lemma 3.1.6 If a and b are distinct nontrivial words and ab = uk for k > 1
and some u, then a1 and b1 are not adjacent.

Proof: Decompose a = uia0 and b = b0uj , where i+j = k�1 and a0b0 = u. As-
suming (arbitrarily) that a � b and that i > 0, consider the point

�
ui�1a0u

�1
,

which is a shift of a1. Then, since a1 � u1 � b1, it follows that

a1 �
�
ui�1a0u

�1
� u1 � b1; (3.2)

whence it follows that a1 and b1 are not adjacent. 2

The concatenation of adjacent orbits is similar in spirit to taking a connected
sum: only one crossing is added.



3.1. knotted orbits on templates 71

Lemma 3.1.7 Let T be an embedded template, and let a1 and b1 be adjacent
periodic points in �`j . The planar presentation of the knot corresponding to
a1 � b1 di�ers from that of the link corresponding to a1 union b1 by the
addition of a single crossing (as illustrated in Figure 3.1).

Proof: Place T in a planar presentation and consider the branch line `j which
contains the points a1 � b1. By isotoping T if necessary, a neighborhood of `j
will appear locally as in Figure 3.1(a) { there are two cases depending on which
strip is \on top." By properties of the ordering �, it follows that

a1 � (ab)
1
� (ba)

1
� b1; (3.3)

so that the concatenated orbit appears as in Figure 3.1(b): there is a new crossing
whose sign is dependent upon the stacking order of strips. The orbit (ab)

1

follows a then b: the ordering of points on other branch lines does not change.
More speci�cally, if, on any branch line,

�
�ia
�1

�
�
�ja
�1

, then it follows that�
�i(ab)

�1
�
�
�j(ab)

�1
for any i; j < jaj. Hence, a1 � b1 may be isotoped

to the link a1 union b1 with a single crossing inserted at the branch line as
speci�ed. 2

a1 b1 (ba)
1

(ab)
1

a1 b1 (ba)
1

(ab)
1

(a) (b)

Figure 3.1: Concatenation of adjacent periodic points e�ects a local change as
above.

Lemma 3.1.7 immediately yields:
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Corollary 3.1.8 Let T be an embedded template, and let a1 and b1 be ad-
jacent periodic points in �`j with self-crossing numbers ca and cb respectively.
Then, the self-crossing number of the concatenation a1 � b1 is given by

ca�b = ca + cb + 2`k (a1;b1) + �; (3.4)

where � = �1, depending upon a1;b1; and T , is the sign of the crossing of
Lemma 3.1.7.

De�nition 3.1.9 The twist of a ribbon (annulus or M�obius strip) in S3 with
c crossings and t signed half-twists (in a given planar presentation) is given as
c + 1

2
t and is an isotopy invariant (see Lemma 5.3.4 for a proof). Given K a

closed orbit on a template T , the twist of K, �K , is de�ned to be the twist of the
normal bundle of T restricted to K. That is, the bundle of normal directions to
T along K is an embedded ribbon in S3 with twist �K . Equivalently, this ribbon
is the local stable manifold to the orbit.

Corollary 3.1.10 Let T be an embedded template, and let a1 and b1 be adja-
cent periodic points in �`j . Then the twist of the concatenated knot corresponding
to the point a1 � b1 is given by

�(a1 � b1) = �(a1) + �(b1) + 2`k (a1;b1) + �; (3.5)

where � = �1; depending upon a;b, and T .

Proof: Apply Lemma 3.1.7 to De�nition 3.1.9. 2

Corollary 3.1.11 Let T be an embedded positive template, and let a1 and b1

be adjacent periodic points in �`j for some j. Then the genus of the concatenated
knot corresponding to the point a1 � b1 is bounded below as

g(a1 � b1) � g(a1) + g(b1): (3.6)

Proof: Arrange T as a braided template with all crossings positive. Via Equation
(1.3), the genera of the knots corresponding to a1 and b1 are, respectively,

g(a1) =
ca �Na + 1

2
; g(b1) =

cb �Nb + 1

2
; (3.7)

where c denotes number of crossings and N denotes number of strands. The
concatenated knot a1 � b1 has Na +Nb strands in its braid presentation, and
it has crossing number given by Equation (3.4). Thus,

g(a1 � b1) =
ca + cb + 2`k (a1;b1) + �� (Na +Nb) + 1

2

= g(a1) + g(b1) +
2`k (a1;b1)� 1 + �

2
: (3.8)
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Since all crossings are positive prior to and after concatenation, `k (a1;b1) � 0.
If � = �1, then in concatenation we have removed a (positive) crossing; thus,
for � = �1, `k (a1;b1) > 0 prior to concatenation, and the result follows. For
� = +1, it is obviously true. 2

Corollary 3.1.11 gives a partial answer to a generalization of a conjecture of
Williams's:

Conjecture 3.1.12 Let T be a positive embedded template. Let a1 and b1 be
periodic itineraries in �`j (not necessarily adjacent). Then, genus is monotonic
under the � operation:1

g((ab)
1
) � g(a1) + g(b1): (3.9)

We will use the � operation in the next subsection, when we describe where on
a template knots live.

3.1.3 The existence of knots on a template

Theorem 3.1.13 Given an embedded template T , there exists a nontrivial knot
as an orbit on T .

Proof: Our proof is in the spirit of Proposition 4.4 of [58], in that we rely upon
the Bennequin inequality.2 Arrange T as a braided template as per Theorem
3.1.2. Choose a1 and b1 in some branch set component �`j with a1 and b1

adjacent. Assume that the twist of a1 or b1 is nonzero. If not, then replace
a1 with a1 � b1. By Corollary 3.1.10, the twist of the concatenated knot is
nonzero and this orbit is still adjacent to b1.

Given a1 and b1 with �(a1) 6= 0, concatenate repeatedly to form the orbit

(anb)
1
= a1 � (a1 � (� � � (a1 � b1) � � �)): (3.10)

We will use the Bennequin inequality, Equation (1.5), to bound the genus of this
knot. By Corollary 3.1.8, the self-crossing number of (anb)

1
is

canb = can
2 +

1

2
tan(n� 1) + cb + (2`k (a1;b1) + �)n; (3.11)

where ca (resp. cb) is the self-crossing number of a
1 (resp. b1), ta is the signed

number of half-twists in the presentation of the embedded normal bundle of a1,
and � = �1. See Figure 3.2 for the count of the terms quadratic in n. By
Equation (1.5),

2g((anb)
1
) �

��can2 + 1
2
tan(n� 1) + cb + (2`k (a1;b1) + �)n

��
�(nNa +Nb) + 1

; (3.12)

1
An exception occurs as in Remark 3.1.4, which we could circumvent by de�ning the genus

of

�
u
k
�
1

to be k times the genus of u
1
.

2
It is an open (and challenging) problem to prove this theorem without resorting to Ben-

nequin's inequality.
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Since the twist �a 6= 0, ca +
1
2
ta 6= 0; hence, canb is quadratic in n as per (3.11).

Thus, for some n, the genus of (anb)
1

is nonzero. 2

k k j

(a) (b)

Figure 3.2: (a) each half-twist on k-strands yields 1
2
k(k � 1) crossings; (b) each

crossing of k-strands over j-strands yields kj crossings.

Corollary 3.1.14 Given an embedded template T , there exists an in�nite num-
ber of distinct knot types as orbits on T .

Proof: Let n!1 above. 2

From this, we may recover the Franks-Williams Theorem for ows on S3:

Theorem 3.1.15 (Franks and Williams [58]) Any C2-ow on S3 which has
positive topological entropy must display an in�nite number of distinct knot types
as closed orbits.

Proof: By a [deep] theorem of Katok [97], a C2 ow with positive topological
entropy must contain a hyperbolic periodic orbit which has a transverse homo-
clinic connection. The Poincar�e-Birkho�-Smale Theorem, Theorem 1.2.33, then
asserts the existence of an embedded Smale horseshoe in the ow. By the Tem-
plate Theorem, this basic set collapses to an embedded template in S3 which
captures knot and link types. This template, and hence the ow, supports an
in�nite number of knot types by Corollary 3.1.14. 2

Remark 3.1.16 Theorem 3.1.15 is a beautiful result, yielding a great deal of
topological information from purely dynamical data. The connection is thus
established: dynamically complicated hyperbolic ows on S3 force topologically
complicated knots as orbits. Several converses exist: for an example, see the
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Morgan-Wada Theorem in Appendix A. Another well-known converse is the
Seifert Conjecture, recently resolved in the smooth case by K. Kuperberg [107].
This result states that there exist smooth nonsingular ows on S3 containing no
periodic orbits whatsoever.

From Theorem 3.1.13 we may also derive information about how knots are
distributed on �T . We show that the nontrivial knots do not con�ne themselves
to any proper subregion.

Corollary 3.1.17 Let T be an irreducible template | that is, the subshift of
�nite type de�ned on �T has a dense orbit. Then, given any point x in �T , there
exists an in�nite number of distinct knot types represented in an arbitrarily small
neighborhood of x.

Proof: Choose a small �-neighborhood N� of x in �T and pick two distinct
periodic points a1 and b1 2 N� (this is always possible since the periodic
points are dense in �T for T irreducible). If necessary, shift b1 to be adjacent
to a1 | this does not remove it from N�. Consider the template ination

R : L(�a; �b) ,! T
�
x1 7! a

x2 7! b
; (3.13)

where �a (�b resp.) is the twist of a
1 (b1 resp.) and L(m;n) is the Lorenz-like

template of type (m;n) (see x2.3.1). This ination is well-de�ned since a1 and
b1 are adjacent. The image of R has branch set

�fR(L(�a; �b))g =

8<
:

[a1;b1] : �a; �b even
[a1;ba1] : �a even ; �b odd
[ab1;ba1] : �a; �b odd

; (3.14)

which is contained within a 2�-neighborhood of a1. By Corollary 3.1.14, this
subtemplate contains an in�nite set of distinct knot types. 2

Remark 3.1.18 Any template obtained from a basic set of a ow is irreducible,
since basic sets have dense orbits. A non-irreducible template is, from our per-
spective, an anomaly.

3.1.4 Accumulations of knots

Knowing that knot types are \densely packed" on any given template says noth-
ing about their precise distribution. What are the chances of a �gure-eight knot
living arbitrarily close to a trefoil? To an unknot? To answer this (in part), we
will explore the special role played by unknots with zero twist.

Proposition 3.1.19 Let T be an embedded template. Suppose that some point
u1 2 �`j represents an unknotted periodic orbit with zero twist. Then, for
every periodic point a1 in �`j such that a1 and u1 are separable, there exist
in�nitely many periodic points in �`j which have the same knot type as a1, and
these accumulate onto u1.
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Proof: Assume (after shifting perhaps) that a1 and u1 are adjacent. We claim
that the concatenation u1 � a1 = (ua)

1
is the connected sum of the two

original knots.

Since a1 and u1 represent separable knots, there is a 2-sphere S2 which
bounds the knots on opposite sides. By placing the sphere in general position,
we may assume that S2 intersects the template T transversally. Denote by I
the subset of the branch line `j which is bounded by the points u1 and a1.

Let N � S3 denote a tubular neighborhood of u1 [ I [ a1 in S3. We
claim that N \ T is isotopic to the con�guration of Figure 3.3. To show this,
note that the space S3 n N is isotopic to a solid torus (the complement of the
unknot u1) with an interior solid torus removed (a neighborhood of the knot
a1) and a (perhaps knotted) hole connecting the boundaries of these solid tori,
corresponding to the arc I . Since a1 and u1 are separable, the solid torus hole
in inessential (it is contained within a ball in the solid torus). As such, one may
use the \lightbulb trick" | if a lightbulb hangs from a knotted cord, the cord
can be isotoped to one without a knot while �xing the light bulb | to show that
N can be isotoped to the con�guration of Figure 3.3 (see [154, p. 257]).

Figure 3.3: The intersection of N and T .

Given N \T as in Figure 3.3(a), the orbit (ua)
1
is isotopic within T (hence,

within S3) to a curve within N . This isotopy involves pushing the orbit \out-
wards" so that it completes a circuit in a neighborhood of a1, crosses to b1

through I , continues around b1, then goes back across I .

After the isotopy, it is clear that (ua)
1
is the connected sum of u1 and a1.

Since u1 is an unknot, (ua)
1

has the knot type of a1. Since u1 is unknotted
and untwisted, (ua)

1
is also separable with respect to u1 and the process may

be iterated, creating the sequence
�
uka

�1
, which accumulates on u1. 2

A converse to Proposition 3.1.19 holds for positive templates and provides a
clue to the distribution of knots on templates.

Theorem 3.1.20 Let T be a positive embedded template. Suppose that a se-
quence of distinct periodic points a1n in �T all correspond to the same knot
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type. Then any accumulation point of this sequence of the form u1 represents
an untwisted unknotted periodic orbit.

Proof: Arrange T as a positively braided template as per Theorem 3.1.2. Given
u1 an accumulation point for the sequence a1n , reindex this latter sequence to
denote the subsequence which converges to u1. For n su�ciently large, a1n must
be of the form

�
ukbn

�1
for k any �xed number: this is pictured in Figure 3.4.

If u1 is nontrivially knotted, then by Equation (1.3), cu > Nu, where cu is
the self-crossing number and Nu is the number of strands in the braid represen-
tation of u1. From the form of a1n =

�
ukbn

�1
, it follows that the genus of

a1n is greater than or equal to k times the [nonzero] genus of u1. As k can be
chosen arbitrarily large, the sequence fa1n gn will not have bounded genus.

u1

a1

Figure 3.4: A portion of the orbit a1n for n large.

If u1 is an unknot of twist �u > 0, then there are at least 1
2
�uk(k� 1) cross-

ings of a1n =
�
ukb

�1
with u1 (cf. Figure 3.2). Since, for n large, k is large,

Equation (3.8) implies that the genus of the sequence fa1n g is unbounded. We
conclude that u1 is an untwisted unknot. 2

Theorem 3.1.20 implies that, on a positive template T , the collection of knot
types supported on T \accumulates" at untwisted unknots and nowhere else.

Remark 3.1.21 Let fig11 be a sequence of distinct closed orbits in a ow. We
say that i accumulates on a closed orbit  if there exists a sequence of points
fxi 2 ig11 which have x 2  as an accumulation point for some x 2 . If
we consider the class of ows that have one-dimensional basic sets (e.g., Smale
ows) with \positive" twisting, we can lift Theorem 3.1.20 to the original ow
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to imply that any in�nite sequence of distinct periodic orbits of bounded genus
must accumulate on untwisted unknots.

Remark 3.1.22 Theorem 3.1.20 fails spectacularly for non-positive templates.
Using results from the remainder of this chapter, it has recently been shown that
in such cases, practically anything can occur: see Remark 3.3.12.

3.2 Universal templates

We have in Theorem 3.1.13 one extreme: every embedded template must contain
a nontrivial knot, and in fact, by Corollary 3.1.14, in�nitely many distinct knots.
The other extreme, however, is unclear, as to whether an embedded template can
contain all knots. Certainly, the �gure-eight knot cannot live on the embedded
Lorenz template L(0; 0), as this template is positive and the �gure-eight knot
cannot be represented by a positive braid (recall Exercise 1.1.21). Hence, there
exist classes of templates which do not contain all knots.

Question 2 Does there exist an embedded template T � S3 containing all knots
as periodic orbits? All links?

The answer to Question 2 was conjectured to be no [24]: we will prove other-
wise, outlining the arguments of [69], while providing a more general perspective.

Question 2 is to some degree not the most general approach to understanding
\what lives" in a given template. Focusing instead on the class of embedded
templates leads to the following question:

Question 3 Given an embedded template T � S3, what are all the subtemplates
of T ?

In this section, we tackle Question 2 by using methods suited for answering
Question 3.

3.2.1 Examples of subtemplate structures

Lorenz-like templates

As a basic example of a subtemplate question, recall Problem 2.3.6 concerning
the relationships between the Lorenz-like templates of x2.3.1. We derive a partial
answer in this subsection, following [168], but using the symbolic methods of this
monograph.

In Figure 2.20 of x2.4.2, we proved that L(0; 2) � L(0; 0) via an isotopic
ination. In the following, we use the symbolic descriptions of x2.4 to list a
slightly more complete collection of isotopic inations relating these templates.
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Proposition 3.2.1 The following template inations act isotopically:

L(0; n+ 2) ,! L(0; n)
�
x1 7! x1
x2 7! x1x2

(3.15)

L(0;�2) ,! L(0;�1)
�
x1 7! x1
x2 7! x22

: (3.16)

Proof: For the �rst ination, a simple generalization of Figure 2.20 is left to the
reader. Figure 3.5 illustrates the isotopy for the second ination. In both cases,
one needs to use the belt trick when \pulling out" the subtemplate. 2

Figure 3.5: The template L(0;�2) is a subtemplate of L(0;�1).

The chain of inclusions among Lorenz-like templates implied by Proposition
3.2.1 is

� � � � L(0; 4) � L(0; 2) � L(0; 0) � L(0;�2) � L(0;�4) � � � �
\

� � � � L(0; 5) � L(0; 3) � L(0; 1) � L(0;�1) � L(0;�3) � � � �
:

(3.17)

The templates U and V

As a more intricate example of subtemplate structures, we turn to two decep-
tively simple templates �rst studied in [169] and later in [69].

Let V denote the embedded template of Figure 3.6(a), also introduced in
Example 2.4.10. Let U denote the embedded template of Figure 3.6(b). Each
template has two branch lines, `1 and `2, and four strips, labeled x1; : : : ; x4.

These templates are related in a fascinating way:

Proposition 3.2.2 The following are isotopic template inations:

F : U ,! V

8>><
>>:

x1 7! x1
x2 7! x1x2x3
x3 7! x4x2
x4 7! x4

; (3.18)
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x1 x2

x3 x4

x1 x2

x3x4

(a) (b)

Figure 3.6: (a) The template V ; (b) the template U .

G : V ,! U

8>><
>>:

x1 7! x1
x2 7! x1
x3 7! x2x4
x4 7! x2x3x4

: (3.19)

Proof: See the isotopies in Figures 3.7 and 3.8. 2

Figure 3.7: The template ination F acts isotopically.

Proposition 3.2.2 presents a puzzling situation: U � V and V � U , and the
inclusions occur in many di�erent ways. By incorporating the symbolic approach
to subtemplates of x2.4, we can track these various inclusions. For example, U
and V display a symmetry which may be exploited to generalize the template
inations F and G:
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Figure 3.8: The template ination G acts isotopically.

Lemma 3.2.3 The template ination

� :
U ! U
V ! V

8>><
>>:

x1 7! x3
x2 7! x4
x3 7! x1
x4 7! x2

(3.20)

takes each orbit to its mirror image.

Proof: The action of � is to exchange the branch lines. As the only crossings
in the templates of Figure 3.6 are at the branch lines, and these are of opposite
sign, the ination � reverses the crossings of each template. 2

Lemma 3.2.4 Given any isotopic template ination R having either U or V as
domain and either U or V as range, the conjugate ination, R� = �R�, is also
isotopic.

Proof: While the symbolic actions of � and R do not commute, the topological
actions do. To see this, note that taking the mirror image commutes with the
Reidemeister moves of Figure 1.3. Hence, topologically, R� acts as �2R. But,
by Lemma 3.2.3, �2 is the identity, and R� acts as R: isotopically. 2

Example 3.2.5 Conjugate inations allow us to increase our \vocabulary" of
inations on the templates U and V ; e.g.,

F
� : U ,! V

8>><
>>:

x1 7! x2x4
x2 7! x2
x3 7! x3
x4 7! x3x4x1

: (3.21)
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Composing the simple inations F and G with their conjugates yields a va-
riety of interesting subtemplate structures: e.g.,

Proposition 3.2.6 Let R : S ,! T be an isotopic ination of some template
S into some template T . If R factors as R2GR1 for some isotopic inations
R1 : S ,! V and R2 : U ,! T , then the image of the isotopic ination R1G

�
R2

is disjoint and separable from that of R.

Proof: First, we isolate the action of the ination G : V ,! U . Consider the
subtemplates given by the images of G and G�. The branch sets of these sub-
templates are, due to Corollary 2.4.15,

�(G(V)) =
[x11 ; x1 (x1x2x3x4)

1
] [x1 (x2x4)

1
; (x1x2x3x4)

1
]

[(x2x4)
1
; x2x4 (x2x3x4x1)

1
] [x2x3x4x

1
1 ; (x2x3x4x1)

1
]

�(G�(V)) =
[(x4x2)

1
; x4x2 (x4x1x2x3)

1
] [x4x1x2x

1
3 ; (x4x1x2x3)

1
]

[x13 ; x3 (x3x4x1x2)
1
] [x3 (x4x2)

1
; (x3x4x1x2)

1
]
:

We claim that the images of these two inations are disjoint subtemplates of
U , except for their common boundary orbit (x1x2x3x4)

1
. This may be shown

by checking that certain shifts of �(G) (considered as \intervals" under �) do
not intersect shifts of �(G�) except at their common boundary and at branch
lines. Though this is perhaps computationally tedious, it is a �nite process which
works when pictures fail.

However, the simplest proof is to carefully check that Figure 3.9(a) accurately
represents the subtemplates in question, and that these are disjoint. In Figure
3.9(b), we crush out the transverse direction of the semiow in each subtemplate,
yielding a link of two graphs. From this, it is clear that these graphs, and hence
the subtemplates, are separable.

It follows, then, that the images of R1GR2 and R1G
�
R2 must also be dis-

joint and separable copies of S in T . 2

Corollary 3.2.7 Each template U and V contains a countable in�nity of sub-
templates isotopic to U and V which are completely disjoint and separable.

Proof: De�ne the ination An to be (FG) (FG�)n, for n = 0; 1; : : :. The image
of each An is a subtemplate of V isotopic to V thanks to Proposition 3.2.2. We
claim that the image of An is disjoint and separable from the image of each An+k
for k > 0. To prove this, note that An+k factors as

An+k =
n
FG (FG�)k�1

o
(FG�)n+1 ; (3.22)

so that the image of An+k is contained in the image of (FG�)n+1. By Proposi-

tion 3.2.6, the images of An and (FG�)n+1 are disjoint and separable, since they
di�er by changing one G to G�. Therefore each template, V and U , contains
in�nitely many separable copies of itself (and of the other template). 2
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Figure 3.9: The subtemplates G(V) and G�(V) (left) are disjoint and separable,
as seen by reducing the subtemplates to embedded graphs (right).

3.2.2 A template containing all links

The embedded templates U and V of Corollary 3.2.7 entwine within one other
in surprisingly complicated ways. We will exploit these subtemplate webs to
answer basic questions about subtemplate structures. We begin with a solution
to the existence problem for templates which are \universal" in the class of links.

Theorem 3.2.8 (Ghrist [69]) The embedded template V contains representa-
tives of every �nite link as periodic orbits.

The proof of Theorem 3.2.8 is the focal point of this chapter, and will be
performed in steps.

We begin by examining a new family of templates, fWq ; q 2 Z+g, illustrated
in Figure 3.10. Each Wq is an embedded q-fold cover of V ; that is, there are 2q
\ears", or copies of the x1 and x3 strips. It is important to note that these ears
alternate in crossing type | we denote them positive- and negative-type ears
accordingly.

It is clear that there is a natural sequence of subtemplate inclusions V =
W1 � W2 � W3 � : : : This increasing sequence is \large enough" to eventually
contain any given link:

Proposition 3.2.9 Given L an arbitrary link in S3, an isotopic copy of L ap-
pears as a set of periodic orbits on the template Wq for q su�ciently large.

Proof: Recall the braid group on N strands, BN , from x1.1, generated by the
elements �i, i = 1:::N�1. We construct \local" representatives of each generator
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2q

Figure 3.10: The template Wq has 2q \ears."

(plus inverses) which live on Wq on a �nite sequence of alternating ears. The
arrangement of ears on Wq mimics the concatenation operation for the braid
group.

In Figure 3.11, we show how to place the braid word �1�2 : : : �k for any k
on an ear with a positive crossing: the leftmost strand travels around the ear
and is reinserted at an appropriate point. Similarly, we may place the word
��11 ��12 : : : ��1k on an ear with a negative crossing. Assuming that some �nite
sequence of ears concatenated together yields the generators �j and �

�1
j for all

j < k, form the generator �k via concatenation:

�k = (��1k�1) : : : (�
�1
2 )(��11 )(�1�2 : : : �k�1�k): (3.23)

Hence, by induction, every �k and ��1k �t on a �nite sequence of alternating
ears.

For b 2 BN a braid on N strands, we may place the closed braid b onWq for
some (perhaps very large) q by piecing together the N -strand generators above
on a �nite sequence of alternating ears, then \connecting" the top and bottom.
More speci�cally, since each component of the link can be given a sequence in
some Markov structure for Wq (though this would be messy to do in practice),
that orbit must exist on the template. We must be careful, however, that no two
components of the closed braid have the same symbol sequence; else, they will
not be distinct orbits onWq . To avoid this, note that since only one strand of the
braid goes around an ear in the generators we use, it is su�cient to ensure that
every strand of b goes around at least one ear. This may be done by appending
the word �N�1��1N�1 to b: this does not change the braid element and hence the
isotopy class of the resulting N -braid on Wq. 2

Since Wq � Wq+1 � : : : eventually contains any given link, our strategy is
to show that reverse subtemplate inclusions also hold: Wq � Wq�1 � : : : � V .
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�1�2 : : : �k

��11 ��12 : : : ��1k

Figure 3.11: The braid words �1�2 : : : �k and ��11 ��12 : : : ��1k �t on the ears of
Wq .

To �nd a copy of Wq within V , we develop a type of surgery for subtemplates of
V . We denote the following procedure appending an ear.

Lemma 3.2.10 Let S � V be a subtemplate of V and let I = [@`(I); @r(I)] be
the component of S \ `1(V) which is minimal among all such intersections with
respect to the � ordering on the upper branch line. If @`(I) 6= x11 , then S is
contained in a subtemplate S+ � V and this template S+ is isotopic to S except
for the addition of an unknotted ear along I. Moreover, the subtemplate S+
contains the orbit @`4(V).

Proof: The subtemplate S is completely determined by its branch set �(S), see
De�nition 2.4.2. That is, given �(S), the subtemplate S is uniquely de�ned by
owing each branch segment forwards until it completely covers a collection of
two or more branch segments. We specify the new subtemplate S+ by modifying
�(S).

Construct �(S+) as follows: begin with �(S) [ [x11 ; x1@r(I)] [ I . This has
the e�ect of adding a new strip which goes once around the x1 strip and attaches
at the new branch line [x11 ; @r(I)]. Then, to form a well-de�ned subtemplate,
whenever an endpoint of some interval of �(S+) ends in @`(I), replace this string
with the string x11 . This has the e�ect of \thickening" the portion of S+ which
comes in along the x4 strip of V : see Figure 3.12.
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S

I

@`4(V)

S+

Figure 3.12: Appending an ear to S � V yields S+.

To prove that �(S+) as de�ned yields a subtemplate, we note that the the
addition of the branch segment [x11 ; x1@r(I)] ows forward to the new branch
line [x11 ; @

r(I)] without interfering with other strips, since I was minimal. What
was the incoming strip of S at I has been thickened to cover x11 at the left
endpoint; hence, there is a local branch line chart for S+ along [x11 ; @

r(I)].
Finally, we note that the appended ear is unknotted and \separable" from

the rest of the subtemplate since the core orbit x11 is a separable unknot. Also,
in thickening up the incoming strip along x4, we include the orbit @

`
4(V) in S+

(this fact will be used later in Theorem 3.2.14). 2

The appended ear along I is a positive ear, since the crossing of the ear over
the rest of the subtemplate is in the positive sense; similarly, negative ears may
be added at the lower branch line:

Lemma 3.2.11 Let S � V be a subtemplate of V and let I = [@`(I); @r(I)] be
the component of S \ `2(V) which is minimal among all such intersections with
respect to the � ordering. If @`(I) 6= x11 , then S is contained in a subtemplate
S� � V and this template S� is isotopic to S except for the addition of an
unknotted ear along I. Moreover, the subtemplate S� contains the orbit @`2(V).

Proof: Apply the symmetry map � to V , taking the subtemplate S to its mir-
ror image S� as per Lemma 3.2.3. The segment �(I) � `1 then satis�es the
hypotheses of Lemma 3.2.10, and one may append an ear to �(S) to obtain a
subtemplate (S�)+ having an appended positive ear. Again applying � to V
takes this subtemplate to its mirror image: a subtemplate isotopic to S with a
negative (the mirror image of a positive) ear appended along �2(I) = I � `2.
This template contains the orbit @`2(V) = �

�
@`4(V)

�
as an orbit. 2

To build copies of Wq as subtemplates of V , we must �nd a way to map V
inside of itself isotopically so as to avoid the x11 and x13 boundaries (e.g., the
isotopic renormalizationD of Example 2.4.16 will not do). Then, we may append
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positive and negative ears in such a way that the resulting template is, say, iso-
topic toW2, and an iterative procedure may be used to build successively larger
subtemplates isotopic toWq. We begin with the appropriate renormalization on
V which keeps track of certain orbits for the iterative procedure later:

Proposition 3.2.12 The ination H � F
�
GFG

� takes V ,! V isotopically.
Among all points of H(V)\ `1(V), the �-minimal point is contained in the orbit
H(@`2(V)).

Proof: The symbolic action of H is

H � F�GFG� : V ,! V

8>><
>>:

x1 7! x2x
2
3x4x1(x2x4)

2x2x3x4x1
x2 7! x2x

2
3x4x1(x2x4)

3x2x3x4x1
x3 7! x2x

2
3x4x1x2x4

x4 7! x2x
2
3x4x1x2x4

: (3.24)

That this ination is isotopic follows from Proposition 3.2.2. To show which
point in the image of V is �-minimal in the upper branch line `1, it is su�cient
to check the image of the boundary of V . This boundary, @(V), is given implicitly
in Equation (2.23) | we �rst recall this information:

@(V) =

8>>>>>>>>>><
>>>>>>>>>>:

@`1(V) = x11
@r1(V) = x1 (x2x4)

1

@`2(V) = x2x
1
3

@r2(V) = (x2x4)
1

@`3(V) = x13
@r4(V) = x3 (x4x2)

1

@`5(V) = x4x
1
1

@r5(V) = (x4x2)
1

: (3.25)

Next, compute the image of the endpoints @
`=r
i (V) under the ination H:

H : V ,! V (3.26)

@`1(V) 7!
�
x2x

2
3x4x1(x2x4)

2x2x3x4x1
�1

@r1(V) 7! x2x
2
3x4x1(x2x4)

2x2x3x4x1
�
x2x

2
3x4x1(x2x4)

3x2x3x4x1x2x
2
3x4x1x2x4

�1
@`2(V) 7! x2x

2
3x4x1(x2x4)

3x2x3x4x1
�
x2x

2
3x4x1x2x4

�1
@r2(V) 7!

�
x2x

2
3x4x1(x2x4)

3x2x3x4x1x2x
2
3x4x1x2x4

�1
@`3(V) 7!

�
x2x

2
3x4x1x2x4

�1
@r3(V) 7! x2x

2
3x4x1x2x4

�
x2x

2
3x4x1x2x4x2x

2
3x4x1(x2x4)

3x2x3x4x1
�1

@`4(V) 7! x2x
2
3x4x1x2x4

�
x2x

2
3x4x1(x2x4)

2x2x3x4x1
�1

@r4(V) 7!
�
x2x

2
3x4x1x2x4x2x

2
3x4x1(x2x4)

3x2x3x4x1
�1

:

From (3.24), the image of the �rst x2 in @
`
2(V) contains two x1 symbols. We

claim that a shift of the image of @`2(V) to one of these two x1 symbols is �-
minimal in `1(V) among all shifts of the image of every other endpoint of �(V)
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which begin with x1. That this is so is a simple matter of choosing the shift of
the image of @`2(V) which is �-minimal in �1(V) and then comparing this to all

such shifts of the other endpoints H(@
`=r
i (V)). Using the �-ordering, this can be

done by hand or (more conveniently) by computer. In this manner, we calculate
that

�14H(@`2(V)) = x1
�
x2x

2
3x4x1x2x4

�1
(3.27)

is �-minimal among all other orbits in the image of H in `1(V), where � denotes
the shift operator. 2

Note that the �-minimal point in H(V) on `1 is not x11 | thus, we may
use this renormalization to append positive ears. The conjugate ination will be
used to append negative ears:

Proposition 3.2.13 The ination H
� � FG

�
F
�
G takes V ,! V isotopically.

Among all points of H�(V)\`2(V), the �-minimal point is contained in the orbit
H
�(@`4(V)).

Proof: Since H is isotopic, so is the conjugate H� via Lemma 3.2.4. Apply � to
Equation (3.27) to show that

��14H(@`2(V)) = �
n
x1
�
x2x

2
3x4x1x2x4

�1o
(3.28)

is �(�)-minimal in �(`1(V)); after an application of Lemma 3.2.3 and the fact
that � commutes with the shift operator �,

�14�H(@`2(V)) = x3
�
x4x

2
1x2x3x4x2

�1
(3.29)

is �-minimal in `2(V). Now insert �2 in the domain. Since � is involutive, we
have shown that

�14�H�(�@`2(V)) = �14H�(@`4(V)) = x3
�
x4x

2
1x2x3x4x2

�1
; (3.30)

is �-minimal in `2(V). 2

We may now complete the major step in the proof of Theorem 3.2.8.

Theorem 3.2.14 The template Wq appears as a subtemplate of V for all q > 0.

Proof: As we will be working with a series of distinct copies of the template V ,
we introduce some notation. Let fV ig denote a sequence of distinct copies of the
embedded template V | each is embedded in a di�erent copy of S3. Construct
an alternating sequence of templates and isotopic inations:

V1 H�! V2 H
�

�! V3 H�! V4 H
�

�! V5 H�! V6 H
�

�! � � � (3.31)

By Proposition 3.2.12, we may append a positive ear to H(V1) in V2 along the
image of @`2(V1), creating the template denoted W+

1 � V2. This subtemplate



3.2. universal templates 89

contains the orbit @`4(V2). By mapping V2 into V3 via H�, we push W+
1 to

a deeper isotopic copy within V3. A negative ear may then be appended to
H
�(W+

1 ) � V3 along H�(@`4(V2)) according to Proposition 3.2.13. Since the
negative ear is appended along an interval having endpoint on H�(@`4(V2)), the
appended negative ear \precedes" the formerly appended positive ear (in the
sense of the ow-direction), yielding a subtemplate of V3 isotopic to W2: see
Figure 3.13.

H H
�

(+) ear
(�) ear

@`2(V1) @`4(V2)

H
�
@`2(V1)

�

@`2(V3)

H
�
@`4(V2)

�

H
�
H
�
@`2(V1)

�

(a) W1 (b) W+
1 (c) W2

Figure 3.13: The steps in building Wq.

We now have the template V3 containing a subtemplate isotopic toW2 which
contains the orbit @`2(V3). Since V3 is again an isotopic copy of V1 with @`2(V3)
corresponding to @`2(V1), we may now iterate the procedure. Map V3 into V4
via H, append a positive ear to the image of W2 to obtain W+

2 , then apply H�

and append a negative ear to the image of W+
2 to produce W3. Since all the

inations involved are isotopic, we continue to carry the completed Wi along
isotopically as we append additional ears. Thus, we can embed Wq in V for
arbitrary q. 2

Proof of Theorem 3.2.8: According to Theorem 1.1.13, any link may be repre-
sented as some closed braid. By Proposition 3.2.9, this closed braid must appear
on Wq for q su�ciently large; hence, by Theorem 3.2.14, this link lives on V . 2

3.2.3 Universal templates

De�nition 3.2.15 A universal template is a template T � S3 among whose
periodic orbits are representatives of every link type.
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From Theorem 3.2.8, we may show the abundance of universal templates.

Proposition 3.2.16 The Lorenz-like templates L(0; n) are universal for n < 0

Proof: In Figure 3.14, we show the image of the ination

L : U ,! L(0;�2)

8>><
>>:

x1 7! x1
x2 7! x31x2
x3 7! x2x1
x4 7! x2x1x2

: (3.32)

It is a (challenging!) exercise for the reader to show that this image is isotopic
to U . By Propositions 3.2.2 and 3.2.1, there is a subtemplate chain

V � U � L(0;�2) � L(0;�4) � L(0;�6) � � � �� L(0;�1) � L(0;�3) � � � � : (3.33)

The result now follows from Theorem 3.2.8. 2

Figure 3.14: The template U is a subtemplate of L(0;�2).

Given some embedded template, it is often relatively easy to recognize a
Lorenz-like subtemplate; hence, we have a useful test for identifying universal
templates.

Corollary 3.2.17 Su�cient conditions for a template T � S3 to be universal
are
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1. There is a two-component unlink on T ; that is, there exist two separable
unknots.

2. One component of the unlink is untwisted; the other is twisted with � 6= 0
twists.

3. The two unknots intersect some branch line of T in two adjacent points
(recall De�nition 3.1.5) The sign of the branch line crossing between these
two points must be opposite that of the twist � .

Proof: Let a1 and b1 denote the adjacent points in �`j , with b
1 denoting the

orbit with twist � . For � < 0, the template ination

L(0; �) ,! T
�
x1 7! a

x2 7! b
(3.34)

is isotopic, since a1 and b1 are an unlink and there is agreement between
twisting and branch line orientation. For � > 0, the same symbolic map sends
the mirror image of L(0;��) into T isotopically. However, the mirror image of
a universal template is also universal. 2

We may use Corollary 3.2.17 to show that certain hyperbolic ows on S3

contain all links as periodic orbits: e.g.,

Proposition 3.2.18 The suspension of the Plykin map, given in Example 2.1.6,
when embedded in S3 in the \standard" way, yields a ow having all link-types
as periodic orbits.

Proof: Recall the Plykin attractor �P described in Example 2.1.6. The inverse
limit construction of Williams implies that we can collapse the attractor for the
map to a branched one-manifold which suspends to a semiow on a branched
two-manifold3. In Figure 3.15, we show two periodic orbits in the suspension of
the Plykin graph. The �rst orbit, a, has period one, is untwisted, and is clearly
separable from all other orbits. The second orbit, b, is an unknot.

It is not hard to see that b must be a twisted orbit; however, even if it were
not, we could use Proposition 3.1.19 and Corollary 3.1.10 to show the existence
of another orbit which is a twisted unknot separable from a. Finally, we do
not need to know the sign of the twist, since on the \branch line" (the graph
�P ), the orbit a is adjacent to a point of b on either side, so it has branch line
crossings of both types; hence, by Corollary 3.2.17, the periodic orbits of this
ow contain all link types. 2

Corollary 3.2.17 is genuinely useful in this instance, since it is very di�cult
to draw an accurate picture of the entire template for the suspended Plykin
attractor. The Plykin attractor is the simplest hyperbolic planar attractor. We
have examined a few other examples and have managed to show that these also
give rise to universal templates: we do not know of an example which does not.

3
Though the suspension of the Plykin graph does not satisfy the de�nition of a template,

it may be thought of as a template with the boundaries sewn together.
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a
b

�P

Figure 3.15: The suspension of the Plykin attractor | top are bottom are
identi�ed. Two orbits, a and b, form a \spine" for a universal subtemplate.

Corollary 3.2.19 There exists a structurally stable vector �eld on S3 such that
the induced ow on S3 contains closed orbit representatives of all knot and link
types.

Proof: The Plykin map suspends to a ow on D2 � S1 which is inwardly trans-
verse on the boundary and has chain recurrent set consisting of three attracting
periodic orbits and the suspended Plykin attractor. Complete the ow on S3 by
taking another D2 �S1 having a single repelling periodic orbit as f0g� S1 and
outwardly transverse at the boundary and gluing these two solid tori together
to get S3 (a more detailed treatment of this construction appears in xA.1). The
resulting ow has a hyperbolic chain recurrent set and hence, by Theorem 1.2.14,
is structurally stable to C1 perturbations. 2

Remark 3.2.20 There are numerous examples of ows on S3 having all link
types as periodic orbits. In x4.4, we will show that ows arising from certain
\simple" ordinary di�erential equations can be modeled with a universal tem-
plate. In [69], it was shown that certain �bred knots, namely the �gure-eight
knot and the Borromean rings, have complement �bred by a �bration whose in-
duced ow contains all links as orbits (recall x2.3.4). As an exercise, the reader
may wish to �nd two orbits on the template for the Whitehead link complement,
Figure 2.17, which satisfy the conditions of Corollary 3.2.17, showing that this
also is a universal template.

The Lorenz-like templates are the simplest class of templates: they have two
unknotted unlinked strips with one branch line. A complete classi�cation of
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these templates into universal and non-universal would be useful, cf. Corollary
3.2.17. At this time, we can o�er only the following:

Proposition 3.2.21 For mn � 0, the Lorenz-like template L(m;n) is universal
if and only if m or n is 0 and the other index is negative.

Proof: Proposition 3.2.16 covers the case where one number is zero and the other
is negative: we will show that all other cases with mn � 0 are not universal. In
the case where m and n are both nonnegative, the template L(m;n) contains
only positive crossings and therefore carries no knots with mixed crossings (such
as the �gure-eight knot). Next, consider the case where m and n are both
negative. Let Ka and Kb be two distinct knots on L(m;n) which form a link.
If L(m;n) were universal, there would be an in�nite number of distinct choices
for Ka and Kb which would span all possible linking numbers. We compute the
linking number as one half the algebraic sum of the total number of crossings,
C, as per Equation (1.2). The crossing number, C, can be decomposed into the
sum

C = Cm + Cn + Co; (3.35)

where Cm equals the contribution due to the m half-twists along the x1 strip,
Cn equals the contribution due to the n half-twists along the x2 strip, and Co
equals the number of crossings due to the overlap of the x1 strip over the x2
strip at the branch line. Denote by aij (resp. bij) the number of xixj blocks in
the periodic itinerary of Ka (resp. Kb). Example: if Ka =

�
x1x

2
2x1x2

�1
, then

a11 = 0; a12 = a21 = 2, and a22 = 1. We note that in all cases,

a12 = a21; b12 = b21: (3.36)

We can calculate the crossing numbers Cm and Cn:

Cm = m(a11+a12)(b11+ b12) � 0; Cn = n(a21+a22)(b21+ b22) � 0: (3.37)

We will maximize the crossing numbers in order to obtain upper bounds;
hence, we assume that there is a minimal amount of negative twisting in the
strips, thereby setting m = n = �1 in Equation (3.37). To maximize the
overcrossing number Co, we again assume that all potential crossings can in
fact occur. This situation is displayed schematically in Figure 3.16, where the
di�erent strands do not represent the knots themselves, rather those portions
of the knots which correspond to the numbers a11, etc. From Figure 3.16, the
crossing number is bounded above by

Co � a12b21 + a21b12 + a11b21 + a21b11 + a22b12 + a12b22: (3.38)

Combining this with Equations (3.35) and (3.36) yields

C � 2a12b12 + a11b12 + a12b11 + a22b12 + a12b22 � a11b11 � a11b12
�a12b11 � a12b12 � a12b12 � a12b22 � a22b12 � a22b22

� �(a11b11 + a22b22)
� 0

:

(3.39)
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a11 b11 a12 b12 b21 a21 b22 a22

Figure 3.16: A schematic diagram of crossings on the template L(�1;�1): each
strand labeled aij (resp. bij) represents a collection of aij (resp. bij) strands of
the knot Ka (Kb) which begin on the strip xi and end on the strip xj .

Hence, the linking number `k(Ka;Kb) is at most zero and L(m;n) cannot sup-
port all links. 2

We have classi�ed the universal Lorenz-like templates in every case except
m < 0; n > 0 (and vice versa). The linking number estimates in the proof do
not yield the necessary results in the case when m and n are of mixed sign. We
settle for the following:

Conjecture 3.2.22 A Lorenz-like template L(m;n) supports all links if and
only if either m or n is zero and the other index is negative.

The most pressing problem concerning universal templates is to determine a
simple set of necessary and su�cient conditions for universality. We conclude
with two related conjectures.

Conjecture 3.2.23 An embedded template T � S3 is universal if and only if
it contains V as a subtemplate.
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Conjecture 3.2.24 An embedded template T � S3 is universal if and only if it
contains a countable untwisted unlink: each component of which is an untwisted
unknot, separable from all other components.

Conjecture 3.2.24 would give an obstruction to hyperbolic dynamics in ows. For
example, the suspension of the identity map on D2 has a countable untwisted
unlink, yet, it does not support closed orbits of all knot types; hence it is not a
hyperbolic system.

3.2.4 Where do all the knots live?

The topological richness of closed orbits on templates that we have examined in
this section is at �rst mysterious. Given an innocuous looking template such as
V , it is hard to imagine what a very complicated knot (e.g., the connected sum
of a thousand trefoils) must look like on this template. As an addendum to this
section, we give a quick computation illustrating how even a \simple" knot may
require a rather complex presentation on a universal template.

The proof of Theorem 3.2.8 is constructive. So, in theory, we should be able
to compute a representative of any given closed braid on V . Consider the �gure-
eight knot, denoted K8. This link in closed braid form has a presentation (in
the standard generators) with three strands as (�2�

�1
1 )2. To place this knot on

Wq for some q, we write the generators �i in the form of Proposition 3.2.9:

(�2�
�1
1 )2 = ()(��11 )(�1�2)(�

�1
1 )()(��11 )(�1�2)(�

�1
1 ); (3.40)

where the empty parentheses () denote positive ears that are not traversed in
arranging K8 on W4.

0

1 2342q

Figure 3.17: The spine of Wq , with fundamental loops labeled.

From the proof of Theorem 3.2.14, we know that W4, and hence K8, live
on V . Although the proof does not supply a precise ination from Wq to V ,
the symbolic action of the construction is traceable in part. In Figure 3.17, we
present the spine of the template Wq, formed by crushing out the transverse
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direction to the semiow. The generators of the fundamental group of Wq are
labeled 0; 1; : : : ; 2q in the order in which they are constructed within V . By
carefully following the proof of Theorem 3.2.14, one can track the images of these
loops i in V for the \simplest" copy of Wq in V :

i i 2 �1(Wq)

0 (H�H)q�1(x2x4) =
�
FG

�(F�G)2FG�
�q�1

(x2x4)

1 (H�H)q�1(x1) =
�
FG

�(F�G)2FG�
�q�1

(x1)

i = 2k > 0 (H�H)q�k(x3) =
�
FG

�(F�G)2FG�
�q�k

(x3)

i = 2k + 1 > 1 (H�H)q�k�1H�(x1) =
�
FG

�(F�G)2FG�
�q�k�1

FG
�
F
�
G(x1)

(3.41)
From this table, we could compute the symbol sequence of this representative

of K8 in V ; however, printing it out might take more room than our publisher
wishes to spare. We merely compute the symbolic period, i.e., the length of the
repeating block of the periodic word.

The knot K8 on W4 determines a word in �1(W4) in the i generators | let
ni, i = 0 : : : 8 denote the number of i terms in this word. In other words, the
link K8 goes around the loop i exactly ni times. To compute jij, the symbolic
length of the image of the loop i in V , we de�ne a symbolic growth matrix for
a template renormalization.

De�nition 3.2.25 Given a renormalization R : T ,! T , where T has Markov
partition fx1; x2; : : : ; xNg, de�ne the growth matrix of R, GR 2 MN(Z

+), as
follows:

GR(xi; xj) = f# of xi symbols in R(xj)gg (3.42)

Lemma 3.2.26 For any R and ~R : T ! T ,

G
R ~R

= GRG ~R
: (3.43)

Proof: This follows from De�nition 3.2.25 and the fact that the number of xi
symbols in R ~R(xj) equals

G
R ~R

(xi; xj) =
X
k

GR(xi; xk)G ~R
(xk ; xj) =

h
GRG ~R

i
(xi; xj): (3.44)

2

We compute the growth matrices for the renormalizations H and H� from
Equations (3.24) and (3.20) to be

GH =

2
664

2 2 1 1
4 5 2 2
3 3 2 2
4 5 2 2

3
775 GH� =

2
664

2 2 3 3
2 2 4 5
1 1 2 2
2 2 4 5

3
775 : (3.45)

Hence, by using Lemma 3.2.26 and the information from (3.41), we can compute
the growth matrix for the renormalization which takes each i into V . This
information yields the length of the orbit i in V :
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Example 3.2.27 To �nd j0j for W4 � V , we look up 0 from (3.41) and note
that it is the image of (x2x4)

1
under (HH�)3. To count j0j, the length, set

~v = [0; 1; 0; 1]t and take the product
�
GHGH�

�3
~v. Then sum all the entries of

this column matrix | from De�nition 3.2.25, this counts the number of x2 and
x4 elements, giving the length j0j.

i ni jij i ni jij
0 3 3387648 5 0 839

1 0 1990365 6 1 77

2 1 1086485 7 1 7

3 1 99679 8 1 1

4 1 9145

(3.46)

Finally, to obtain the length of the representative of the �gure-eight knot K8

in V , a simple computation from (3.46) gives:

jK8j =
8X
i=0

nijij = 11; 358; 338; (3.47)

or, over eleven million. There are surely simpler representatives of K8 on V ;
however, the simplest may still be outside of the range in which one can draw
it.4

This example illustrates that methods used in the proof of Theorem 3.2.8
extract relatively \deep" information from templates.

Remark 3.2.28 To compute upper bounds for the minimal length of a given
knot type represented on V , one need merely compute the Perron-Frobenius
(i.e., maximal) eigenvalue of the growth matrix GH | it is about 10.332. Then,
given any knotK, write it in braid format which is compatible with the template
Wq , as done in Equation (3.40). Note that the length jKj of the resulting braid
word may be quickly estimated from any braid version of L via the procedure of
Proposition 3.2.9. A (poor) lower bound for the length of an orbit representing
K is then given by (10:332)jKj�1, since then ination H (or H�) must be applied
jKj � 1 times to �t Wq with the braid form of K on it within V . Applied to
the �gure eight example with braid length 8 (from Equation (3.40)), one gets
an upper bound for the minimal length as 12; 567; 447 | o� from our computed
example by about ten percent.

3.3 Subtemplate structures

Although the results of Theorem 3.2.8 are exciting, we have, to some degree,
drawn our conclusions too soon. The proof succeeds because it examines sub-
template structures, which carry the desired links, rather than examining the

4
Two of us (MS, RG) tried very hard to �nd a copy of K8 on V or U before Theorem 3.2.8

was discovered.
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individual knots and links per se: the crucial step lies in showing Wq � V . We
begin this section by resuming our study of the subtemplates of V . The results of
this line of inquiry will lead to generalizations of Theorem 3.2.8 and will suggest
directions for further investigation along the lines of subtemplate structures. We
do not present all the results in full detail: the interested reader should be able
to �ll in such as necessary.

We must distinguish between orientable and nonorientable cases, since an
orientable template cannot contain any nonorientable subtemplates. In x3.3.1
and x3.3.2, we prove the existence of templates which are \universal" in the
classes of orientable and nonorientable templates in that they contain isotopic
copies of all [orientable] templates as subtemplates.

3.3.1 Orientable subtemplates

We begin with a generalization of the braid group structure of De�nition 1.1.11
to a semigroup structure on braided templates. The generators of the semigroup
are of three types:

1. ��i , is a \at ribbon" version of the generators for the braid group: the
ith strip crosses over the (i + 1)st in the positive sense. These elements
are invertible;

2. ��i , is the trivial element (a collection of straight at strips) with the ith
strip given a half twist, either in the positive (�i) or negative (�

�1
i ) sense.

These elements are invertible.

3. ��i , is a branch line chart with the ith and (i + 1)st strips incoming, k
outgoing strips5, and either a positive (�i) or a negative (�

�1
i ) crossing at

the branch line. These generators are not inverses, as branch lines cannot
be cancelled under composition.

Figure 3.18 illustrates the generators.
The following result is obvious, and implicit in the proof of Theorem 3.1.2

[58]:

Lemma 3.3.1 The set f��i ; �
�
i ; �

�
i g generates the class of braided templates.

With the braided template semigroup playing the role of BN in Theorem
3.2.8, we may generalize this result to:

Theorem 3.3.2 The template V contains every embedded orientable template
S as a subtemplate. Furthermore, these may be chosen so as to be disjoint and
separable.

Proof: Recall Theorem 3.2.14 | V contains Wq for all q. The strategy of the
proof of Theorem 3.2.8 was to show that any given closed braid can be �tted

5
For simplicity, we suppress reference to the number of strips involved, which varies through-

out the braid presentation, in our notation.
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(a) (b) (c)

Figure 3.18: The generators for the braided template semigroup: (a) �i; (b) �i;
(c) �i.

onto someWq. We use the semigroup for braided templates in analogous fashion
to show that all orientable templates also live on Wq , and hence on V .

Consider S a template in S3, presented as a at braided template as per
Theorem 3.1.2. To show that such a given template lives as a subtemplate of
Wq for some q, we will express each generator as a subtemplate of a portion of
Wq ; that is, on a �nite sequence of alternating ears.

In Figure 3.19, we exhibit a portion of a subtemplate on a pair of positive and
negative ears which corresponds to the generator �1�2 : : : �k for any desired k.
Note that the belt trick is used in concert with two ears of opposite sign to cancel
the full twist induced by going around an ear. One constructs the generator
��11 ��12 : : : ��1k in analogous fashion. To show that some �nite product of these
yields �j and �

�1
j for any j, we follow the same argument as in Proposition 3.2.9.

To show that �i and ��1i appear likewise, we turn to Figure 3.20, which
contains a local picture of the generator �i. The �rst i strips travel around a
negative ear and then a positive ear (or vice versa for ��1i ) in order to cancel
the twisting and allow for a positive (negative resp.) crossing at the branch line.

Since an orientable braided template may always be made at, we do not
need to �t powers of �i on Wq; hence, the entire generating set for braided
orientable templates appears locally on a �nite set of alternating positive and
negative ears. Pieceing together local submanifolds on Wq is always possible as
long as the number of strips matches | after including all the crossings, branch
lines, etc., one simply connects the top to the bottom strips in the standard
way. Hence, given any template presented in these standard generators, one
may construct for some q (perhaps very large) a subtemplate of Wq which is
isotopic to the intended template.

The result then follows from Theorem 3.2.14. 2
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Figure 3.19: The braided-template word �1�2 : : : �k lives on a pair of alternating
ears.

Remark 3.3.3 Theorem 3.3.2 indicates that, among the class of orientable tem-
plates, V is not merely an example of an exceptional template: it (and all other
such templates) truly deserves the title of universal template, since a template
contains all orientable templates if and only if it contains V .

Corollary 3.3.4 The template V contains all evenly twisted links: that is, it
contains all links indexed by the (even) twist of the local stable manifolds (see
De�nition 3.1.9).

Proof: Given an indexed link L, where the components of L are indexed by the
twist, build an orientable template TL which contains the link L as its \spine."
More speci�cally, form a connected graph from L by (arbitrarily) identifying
points on components pairwise. Then, thicken the graph up to a template,
adding branch lines at vertices and twisted strips along the edges as appropri-
ate: cf. Figure 3.9(b). This template, which contains L as a set of periodic
orbits, lives on V by Theorem 3.3.2. 2

Our next result shows that any orientable template may be embedded in S3

as a universal template (and then some):
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Figure 3.20: The generator �i lives on a pair of alternating ears.

Theorem 3.3.5 Any orientable template T may be embedded in S3 so as to
contain an isotopic copy of all orientable templates as disjoint separable subtem-
plates.

Proof: Assume for the moment that, for some branch line `j , there exist two
periodic points of �`j , a

1 and b1, such that each symbol xi in the Markov
partition of T appears at most once in the word ab; thus, each strip of T
contains at most one strand of the link fa1;b1g.

Re-embed T by changing the overcrossings of strips in the given planar pre-
sentation in the manner to be described: by the above condition, whenever the
knots corresponding to a1 and b1 cross one another, they must do so on sep-
arate strips. Re-embed T so as to force the strip containing the orbit a1 to
always be on top. In this embedding, then, the two knots are clearly separable.

Now restrict attention to those instances where the knot corresponding to
a1 crosses itself: if a and b are chosen as above, this crossing must be due to a
strip crossing over itself or another strip. Beginning at an arbitrary point on this
orbit, follow along the direction of the ow | whenever there is a self-crossing,
re-embed the strips so that the desigated point is on top. When �nished, one
has a knot which can be perturbed so as to have a unique local maximum: an
unknot. Repeat this procedure for the knot b1, noting that one is not tampering
with any previously re-embedded strips.
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Finally, build a Lorenz-like subtemplate of T given by the image of the ina-
tion x1 7! a; x2 7! b, as in Equation (3.13) in Corollary 3.1.17. Since the orbits
corresponding to a1 and b1 are unknotted and separable, the subtemplate in
the particular embedding of T we have chosen is isotopic (up to taking the mir-
ror image) to the Lorenz-like template L(�a; �b) for some even numbers �a; �b,
depending on twist. Change the embedding of T by adding full twists to selected
strips so that the subtemplate is isotopic to L(0;�n) (or its mirror image), for
positive n, which contains all orientable templates as separable subtemplates.

To conclude, we must verify our assumption that a1 and b1 exist. First,
we eliminate certain troublesome strips. If a particular branch line `j has only
one outgoing strip, we may have to choose a and b to both travel down this
strip. To avoid any problems associated with this, we perform an isotopy on
T within a tubular neighborhood of T in S3. This isotopy has the e�ect of
pushing the branch line `j forwards (in the sense of the semiow) along the
one outgoing strip until it is almost identi�ed with the next branch line: see
Figure 3.21. Under such an isotopy, any crossings that this unique outgoing
strip was formerly involved with are now subsumed by crossing of other strips
(including twisting in the original strip). Thus, we can ignore orbits which travel
down this strip in the above arguments, and, in identifying the shrunken strip
to the next branch line, we assume that every branch line chart contains at least
two outgoing strips.

Figure 3.21: One can \eliminate" a single-outgoing strip by propagating the
branch line forwards.

Next, choose a �nite admissible orbit a1. We claim that a may be chosen
such that the knot passes through each branch line at most once. Assume that
a = a1a2a3, where a2 and a3 are words whose orbits begin from the same branch
line. Then, replace a with a1a3: this is an admissible word since incoming strips
stretch over branch lines completely. Iterating this reduction on a word of �nite
length is a terminal process.
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Finally, we claim that b may be chosen similarly to have no symbols in com-
mon with a. Recall, we have modi�ed T to have [in e�ect] at least two outgoing
strips per branch line chart, and a intersects each branch line at most once.
Beginning at some branch line of T , choose an outgoing strip whose symbol is
not part of a | this is always possible since there are more than two outgoing
strips. This outgoing strip leads to another branch line. Repeat the process
of choosing outgoing strips avoiding a until the branch line is repeated: this
de�nes a periodic orbit a0. If a0 and a have a branch line in common, this is
the desired b. If not, repeat the process of choosing another periodic orbit a00

| this algorithm may be repeated since there are again at least one incoming
and outgoing strips per branch line on T minus the strips of a and a0. Since the
Markov partition is �nite, this is a �nite process; hence, a and b may be chosen
as above. 2

Corollary 3.3.6 Any embedded orientable template T contains a (nonisotopi-
cally) embedded copy of every orientable template.

3.3.2 Nonorientable subtemplates

The nonorientable case is quite a bit more subtle, but is solved in similar fashion.
We leave the [numerous] details of the following theorem to the reader.

Theorem 3.3.7 There exists a template which contains every embedded tem-
plate S as a subtemplate.

Idea of Proof: We begin with the template L(0;�2), which contains V via the
ination LG, where L : U ,! L(0;�2) is the ination of Equation (3.32). Then,
we append an extra ear to this template which is twisted and separable from the
remainder of the template: see the template Y in Figure 3.22. Given any tem-
plate, we then show that it may be obtained by �rst placing a similar orientable
template on L(0;�2), then diverting some of the strips around the twisted ap-
pended ear of Y to produce the requisite nonorientable subtemplate.

Let S be an arbitrary embedded template in S3. We briey indicate how to
place S in the appropriate form for being a subtemplate of Y .

Step 1: Place S in braided form as per Theorem 3.1.2, and represent this
template in the braid semigroup of Lemma 3.3.1.

Step 2: Factor this braid word so that there is a positive half-twist � on
the �rst k strips, where � is the word

� = �1�2 � � � �k

 
k�1Y
i=1

�1�2 � � ��i

!
; (3.48)

followed by a braid word having no ��i terms.
Step 3: For S braided into the word above, let ~S denote the at orientable

template given by removing the initial word � from the braid word. Map ~S
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x2

x3x4

x1

Figure 3.22: The template Y contains all templates as subtemplates.

into L(0;�2) � Y isotopically via the ination LGI, where I : ~S ,! V is the
ination from the proof of Theorem 3.2.8 and L : U ,! L(0;�2) is the ination
from Equation (3.34).

Step 4: Now, by carefully tracking the placement of the �rst k strips in
S � Y , modify the ination in the appropriate manner to \divert" the leftmost
k strips of S on Y to instead make a loop around the appended twisted x1-ear.
This has the e�ect of inserting � into the braid word for ~S at the beginning.
This new template is the original S by Step 3. 2

Corollary 3.3.8 The template Y contains isotopic copies of links with arbitrary
twist type.

Proof: See the proof of Corollary 3.3.4. 2

Remark 3.3.9 Note that although Y contains all embedded templates as dis-
joint subtemplates, these may not be chosen so as to be mutually unlinked in
the present construction, since there is a linking induced by the trip about the
twisted ear. We believe that this is unavoidable: i.e., no embedded template
contains disjoint unlinked copies of all embedded templates as subtemplates.

We do not believe that the results of Theorem 3.3.5 hold for nonorientable
templates: that is, we do not believe it is possible to re-embed, say, the horse-
shoe template L(0; 1) in such a way that it contains copies of every embedded
template, or even the orientable ones. A related, though weaker statement is
however true:

Proposition 3.3.10 Any embedded non-orientable template T contains a (non-
isotopically) embedded copy of all templates.
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Proof: If T is nonorientable, we must construct an ination from the template
Y of Figure 3.22 into T . Take a1 twisted and b1 untwisted with the pair
adjacent. Then consider c = a2b: c1 is an untwisted orbit with a1 and c1

adjacent and
�
ba2

�1
and b adjacent. Hence, there is a well-de�ned template

ination,

R : Y ,! T

8>><
>>:

x1 7! a

x2 7! a2

x3 7! b

x4 7! b

: (3.49)

As this ination is nonisotopic, we have a di�erent embedding of all the subtem-
plates of Y into T . 2

Ostensibly, it seems surprising that the template for the Whitehead link
complement (Figure 2.17) embeds in the horseshoe template L(0; 1).

Remark 3.3.11 Although the results of this section are exciting, they may also
be cause for concern in certain applications: recall from x2.3.5 the construction
of induced templates from time series data. Ko�carev et al. derive an induced
template in [106] which, by appealing to Theorem 3.3.7, we can show contains
all embedded templates as subtemplates. In the literature on induced templates,
it is implicit that the \physical" system may be expected to contain merely a
subset of the knots and links on the induced template. Hence, the use of this
induced template would appear to be of limited applicability | it contains far
too much.

Remark 3.3.12 The theorems of this section can be applied to the problem of
accumulations of knots on a template from x3.1. In contrast to Theorem 3.1.20,
universal templates have no restrictions on the types of accumulations of knots.

Theorem 3.3.13 (Ghrist [68]) Let fKig be an arbitrary sequence of knot types,
and let K be any chosen knot type. Then, on the universal template V, there
exists a sequence of distinct closed orbits fig of knot type Ki, which accumulates
onto a closed orbit  of knot type K.

This theorem sheds light on the class of in�nite links contained in universal
templates: of course, not every in�nite link may live on a template, but there is
no obstruction as far as accumulations of knot types goes.

Remark 3.3.14 A template contains both topological and dynamical informa-
tion. By \forgetting" the topology, one reduces a template to a purely dynamical
object. For example, if one takes the set of branch lines as a cross-section to the
semiow, on obtains a set of coupled, expanding, one-dimensional maps. Or,
if one collapses a template along the direction transverse to the semiow, one
obtains a directed graph, which de�nes a subshift of �nite type (cf. Remark
1.2.22). Theorems 3.3.2 and 3.3.7 then yield as a scholium a dynamical result:
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Corollary 3.3.15 Let (�A; �) be an irreducible subshift of �nite type. Given
any N�N matrix of zeros and ones, B, there exists a local cross section �0 � �A
such that the return map r acting on this cross section is conjugate to the subshift
de�ned by �B.

A similar result holds with renormalizations of coupled, expanding one-
dimensional maps. These dynamical results are, if not well-known, then at least
provable through much simpler methods than those of this chapter. Yet, we note
that the methods used in this chapter are by-and-large topological: Alexander's
Theorem, braid groups, etc., are key tools. Thus, we are pleased that knot-
theoretic tools can be brought to bear on a dynamical problem. In the next
chapter, too, such tools will be shown to be useful in studying bifurcations of
parametrized families of ows.



Chapter 4: Bifurcations

In Chapter 3 we derived general results on template knots and links. The theme
was one of richness and inclusion: every template contains in�nitely many dis-
tinct knot types; templates carrying unlinked, unknotted, untwisted orbits sup-
port in�nite sequences of isotopic knots, and, most strikingly, \many" templates
with mixed crossings carry all knots and links (and even all templates).

We now turn to issues of uniqueness and exclusion, asking how knowledge of
knotting and linking data implies restrictions on families of periodic orbits and
the bifurcations in which they are created. More speci�cally, in a parametised
family of ows, periodic orbits appear and disappear in [often complicated] se-
quences of bifurcations. But for three-dimensional ows, it is the link of periodic
orbits which undergoes bifurcations. Thus, if (1) we \dress" the periodic orbit
set with knotting and linking information; and (2) we compute the topological
action of bifurcations on orbits, we produce a set of bifurcation invariants derived
from knot theory. This chapter will be a brief tour through several applications
of this principle.

We begin with introductory remarks on local bifurcation and continuation of
orbit branches and some elementary observations regarding the link structures
arising in saddle node and period-multiplying (doubling and Hopf) bifurcations
from closed orbits. In x 4.2 we describe a number of results on the horseshoe
template H of Figure 2.9, the major ones being existence, non-existence and
uniqueness theorems for families of torus knots of speci�ed dynamical periods.
These provide invariants which distinguish orbits, permitting us to follow them
from a chaotic hyperbolic set, back to their birthplaces in parameter space,
thereby determining genealogies and orders of precedence in a family of H�enon
maps. Section 4.3 contains knot theoretic analogues of the self-similarity results
on bifurcation sequences of the quadratic family (1.23) introduced in x1.2.3.
We show how a factorisation of kneading sequences corresponds to subtemplates
which are embedded copies ofH, and indicate how this may be used to determine
the orbits implicated in iterated torus knots and more general cabled structures
involving horseshoe knots and links. Perhaps the major interest in this work
is the way in which knot invariants a�ord a link (pun intended) between local
bifurcations and global questions.

In the �nal section we address global bifurcations more explicitly, describing
some periodic orbit structures that appear near homoclinic orbits to saddle-type
equilibria. We call attention to two types of topologically signi�cant global bifur-
cations | the gluing bifurcations, and the bifurcations surrounding a Shil'nikov
connection. In the case of gluing bifurcations, the issue at hand is not richness
of orbits (primarily only \simple" knots appear), but of countable bifurcation
sequences. In stark contrast, in the Shil'nikov scenario, we �nd a general case
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in which the universal template V of x3.2 is contained within the ow, thereby
giving a set of (primarily dynamical) su�cient conditions under which a given
ODE contains all knots and links among its periodic orbits. We close with an
example of a piecewise linear ODE which satis�es the necessary hypotheses: an
explicit seed from which all knots and links can be grown.

This chapter provides merely a sample of numerous results which have been
obtained for speci�c systems. For further examples, see [87, 93, 88, 70, 118, 119,
180]. It is our hope that knotting and linking data will become increasingly useful
tools in the subtle business of tracking global phenomena in the bifurcations of
periodic orbits.

4.1 Local bifurcations and links

In x1.2.3 we described the three codimension-one bifurcations of maps: the
saddle-node, period-doubling, and Hopf bifurcations (we also noted the symmet-
ric pitchfork bifurcation). In the associated three-dimensional ows obtained by
suspending these families, there are natural and simple implications for knotting
and linking of the periodic orbits involved. Speci�cally, we have:

Proposition 4.1.1 The periodic orbits implicated in a saddle-node or pitchfork
bifurcation of a three dimensional ow are isotopic knots and have the same
linking number with any other orbit which persists through the bifurcation point.

Proof: We discuss the saddle-node case, as that of the pitchfork is analogous.
Consider the parametrised Poincar�e map on a small cross section to the ow
transverse to the orbit at the bifurcation. Upon passing the parameter through
the bifurcation, the �xed point becomes a pair of �xed points, one of which (say
p1) is a saddle, the other of which (say p2) is either a source or sink.

In the case of p2 a source and for parameter su�ciently close to the bi-
furcation, one branch of W s(p1) is a small segment contained in W u(p2) with
endpoints p1 and p2. Hence, in the suspension of the return map, the two pe-
riodic orbits form the boundary components of an embedded annulus, and are
thus isotopic. 2

Proposition 4.1.2 The periodic orbits created in period-doubling and Hopf bi-
furcations are cables of the original (bifurcating) orbit.

Proof: Following the proof of Proposition 4.1.1, one notes that the orbit of
period 2T created in period-doubling bifurcation is the boundary of a M�obius
band formed of the two-dimensional stable (or unstable) manifold associated
with the eigenvalue of the Poincar�e map passing through �1, whose core is the
original period T orbit. As such, it is clearly a 2-cable. Similarly, since the
q-periodic orbits created in a Hopf bifurcation approach those of the linearised
mapping (1.21) at the bifurcation point, and this map is a rigid rotation by p=q,
they are q-cables of the core period T orbit. As in Proposition 4.1.1, varying
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the parameter su�ciently close to the bifurcation point creates an isotopy of the
orbits in phase space, which preserves cabling and linking. 2

Remark 4.1.3 Hopf bifurcations of maps resulting in periodic orbits are some-
times called period multiplying bifurcations, although, as noted in x 1.2.3, this
name more properly refers to the special case of (two-dimensional) area-preserving
maps. Here the determinant of the linearised mapping (equal to the product of
the eigenvalues) is 1 and so, as one varies a parameter, the eigenvalues of an
elliptic �xed point must traverse the unit circle, which they can only leave at
+1 (a saddle-node) or �1 (period-doubling). In this case the parameter � and
cubic term (r3) in (1.21) are identically zero, and the parameter of interest is
the rotation angle '. As ' passes each value 2�p=q, a pair of q-periodic orbits
of rotation number p=q generically bifurcates from the elliptic core orbit, again
leading to q-cablings of the original orbit. See [122, 123], or the summary in [93]
for details.

These results may be used to exclude certain global orbit branches and bi-
furcations in generic three dimensional ows. Following Alexander and Yorke
[2] and Kent and Elgin [104], we briey describe an example: the \noose" bifur-
cation.

We will need some de�nitions encoding twisting information for orbits in
three-dimensional ows, following [2].

De�nition 4.1.4 Let  be a periodic orbit in a three-dimensional ow having
associated Poincar�e map with eigenvalues �1 and �2. Then  is said to be elliptic
if both eigenvalues have moduli satisfying one of the following conditions: either
(1) the moduli are both greater than one; (2) the moduli are both less than one;
or (3) the moduli are both equal to one with �i 6= �1. When j�1j < 1 < j�2j,
 is an unstable saddle orbit | here there are two sub-types, depending upon
the twist of the local unstable manifold W u

loc(), which is a two-dimensional
ribbon. (See Remark 1.2.18.) If the twist is even, so W u

loc() is an annulus, we
call  hyperbolic; if the twist is odd so that W u

loc() is a M�obius band, we call
 M�obius.

Hyperbolic orbits have positive real eigenvalues, M�obius orbits, negative ones.
All generic (non-bifurcating) periodic orbits belong to one of these three classes.
Note that this terminology di�ers from the standard usage in dynamical systems
theory.

The local bifurcation results of Propositions 4.1.1 and 4.1.2 can now be aug-
mented. We �rst note that, for ows on orientable three-manifolds, the Poincar�e
maps are necessarily orientation preserving, implying that �1�2 = det(DP ) > 0.
In a codimension one saddle-node, one eigenvalue �1 = +1, the other being
bounded away from the unit circle. It follows that, of the two orbit branches
created, one is elliptic and the other hyperbolic. Similar observations apply to
the pitchfork bifurcation, in which either an elliptic orbit becomes hyperbolic
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and gives birth to two new elliptic orbits, or a hyperbolic orbit becomes elliptic
and two hyperbolic orbits are born: see Figure 4.1.

In contrast, in the period-doubling bifurcation, since the critical eigenvalue
is �1 = �1 and the associated local invariant (center) manifold has odd twist,
the bifurcating (period q) orbit is M�obius on one side of the bifurcation point
and elliptic on the other. The period 2q orbit which bifurcates o� can be seen as
bounding a M�obius band which is the local (weak) stable or unstable manifold
of the period q core orbit. Since it goes around twice before closing, its twist
is necessarily even. Thus it is either hyperbolic (if of saddle type) or elliptic (if
stable, neutral or unstable): see Figure 4.1.

SN

PF
PD

elliptic

hyperbolic

M�obius

Figure 4.1: Local bifurcations of orbits, labeled as elliptic, hyperbolic, and
M�obius.

De�nition 4.1.5 Let  be a hyperbolic or M�obius periodic orbit. The self-
linking number of  is de�ned as

s`k() = `k (0; ) ;

where 0 is a boundary component of the local unstable manifold W u
loc().

Lemma 4.1.6 Self-linking number is invariant along a continuous branch of
orbits in parameter space so long as it is well-de�ned and the orbit path does
not change type. In addition, s`k() is always odd for a M�obius orbit, and, in
changing from a M�obius to a hyperbolic orbit, the self linking number doubles.

Proof: Invariance follows as before from the fact that a path of orbits in param-
eter space avoiding bifurcations gives an isotopy of the local unstable manifold.
The remaining facts are easily shown with a picture or two, and are left as in-
structive exercises for the reader. 2

Note that s`k may be either odd or even for hyperbolic orbits. In addition,
when an orbit changes type from M�obius or hyperbolic to elliptic, self-linking is
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1

2

e

h

Figure 4.2: A bifurcation diagram containing a noose.

lost.

Following work of Alexander-Yorke [2] and Kent-Elgin [104], we consider the
bifurcation diagram pictured in Figure 4.2: a branch of orbits loops back through
a saddle node bifurcation to join itself in a period-doubling. Topologically, this
requires one of the orbits born in the saddle-node to wrap around its partner as
the boundary of a M�obius band. While this sort of bifurcation can generically
occur in ows of dimension four and higher, there are nontrivial restrictions in
dimension three:

Proposition 4.1.7 (Kent and Elgin [104]) For a ow on R3 parametrised by
�, the \noose" pictured in Figure 4.2 is impossible.

Proof: This is an exercise with linking, self-linking, and twist. The noose
joins at a period-doubling point; hence the smaller period orbit 1 implicated in
it starts either as a M�obius or an elliptic orbit, while the longer period one 2
is elliptic or hyperbolic. In either case, while both orbits coexist, `k (1; 2) is
odd, and, if 2 is hyperbolic, s`k (2) is even.

We further augment Proposition 4.1.1 by noting that the twist of the two-
dimensional local invariant (center) manifold associated with the bifurcating
eigenvalue (+1) at a saddle-node is inherited by both the elliptic (e) and hy-
perbolic (h) orbits produced. Since directly after bifurcating h and e are
\parallel" on this band, the self-linking number of the hyperbolic orbit satis�es
s`k(h) = `k(e; h). The fact that `k(1; 2) is odd near the period doubling
implies that `k(e; h) must likewise be odd, so that s`k(h) is odd. But we
showed that for the hyperbolic orbit, self-linking is even. 2

Remark 4.1.8 Alexander and Yorke [2] have developed an index theory for
dealing with general bifurcation diagrams. They, as well as Kent and Elgin
[104], have found certain types of nooses which can live in three-dimensional
ows; however, these allowable nooses involve nongeneric behaviour, such as
pitchfork bifurcations, or intricate heteroclinic connections. Statements more
general than that of Proposition 4.1.7 can be made which exclude these unusual
cases.



112 chapter 4. bifurcations

Having indicated how knotting and linking may be used to exclude certain
global phenomena in bifurcation behavior, we proceed to a more complicated
instance associated with a particular template.

4.2 Torus knots and bifurcation sequences

The horseshoe template may be derived from a ow embedded in a solid torus, as
indicated in x2.3. The underlying vector �eld often models a periodically forced
oscillator. As such, the template's (single) branch line corresponds naturally to
a global cross section in the original ow, and the number of intersections of
a periodic orbit with the branch line is the dynamical as well as the symbolic
period of the knot (cf. Remark 2.4.5). This observation prompts the following:

De�nition 4.2.1 Given a (p; q) torus knot, we say it is a resonant torus knot if
it has period q.

Recall, we may take p < q without a loss of generality.

Example 4.2.2 Consider the word w1 = (x1x
2
2x1x2)

1, of period �ve. To
determine whether it is a torus knot, we draw it on the horseshoe template H.
The �ve points in the intersection of the knot with the branch line of H have
addresses f�k(w1) : k = 0; 1; 2; 3; 4g. To determine the order in which these
points are traversed as one follows the knot, we use the prescription of x1.2.3,
and compute the invariant coordinates of w1 and its shifts:

Word Invariant coordinate Ordering

w = (x1x2x2x1x2)
1 � (w) = x1x2x1x1x2 : : : 0

� (w) = (x2x2x1x2x1)
1 �(� (w)) = x2x1x1x2x2 : : : 2

�2(w) = (x2x1x2x1x2)
1 �(�2(w)) = x2x2x1x1x2 : : : 3

�3(w) = (x1x2x1x2x2)
1 �(�3(w)) = x1x2x2x1x2 : : : 1

�4(w) = (x2x1x2x2x1)
1 �(�4(w)) = x2x2x1x2x2 : : : 4

Drawing a simple closed curve on H which passes through the branch line points
in the prescribed order above yields the knot corresponding to w1, as shown
in Figure 4.3(a). The reader can perform Reidemeister moves to obtain Fig-
ure 4.3(b), revealing that (x1x

2
2x1x2)

1 is a (2; 5) resonant torus knot. Similarly,
it can be veri�ed that (x21x2x1x2)

1, also of period �ve, corresponds to a (2; 3)
torus knot, and hence is not resonant.

Numerous statements can be made regarding existence and uniqueness for
torus knots and resonant torus knots on the horseshoe template. Before giving
the �rst of these, which requires a lengthy proof, we state a simpler result on
pairs of orbits arising in saddle node bifurcations. The key idea throughout this
and the following section involves mapping sets of words to knot types, and we
use extensively the ordering of points on the branch line via symbolic dynamics
and kneading theory of x1.2.3. In doing so, we refer to the return map fH
induced on the branch line by the semiow.
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Figure 4.3: (a) The orbit (x1x
2
2x1x2)

1 is (b) a resonant (2; 5) torus knot.

Given two words corresponding to template knots, it is generally di�cult
to determine if the knots are isotopic. As noted earlier, this is relevant to the
associated bifurcation behavior; e.g., upon varying parameters in a ow, non-
isotopic orbits cannot collapse onto one another in saddle-node bifurcations.
However, in some cases we can perform isotopies on the template to obtain such
results.

Lemma 4.2.3 Let w1 be a periodic point on �H which is minimal with respect
to � among all its shifts. Then, if the words wx1x2 and wx22 are both acyclic,
then the knots on H corresponding to (wx1x2)

1
and

�
wx22

�1
are isotopic.

Proof: Let fpign0 and fqign0 be the points at which the orbits (wx1x2)
1

and�
wx22

�1
respectively intersect the branch line. These correspond symbolically

to all shifts of the words wx1x2 and wx
2
2. By Proposition 1.2.47, the minimality

of these words implies that p0 < pk;8k 6= 0 and pn > pk;8k 6= n, and similarly
for q0 and qn. Since the semiow takes pn�1 to pn and pn is maximal among the
pi points, then among all the pi points on the left half of the branch line (that is,
the strip x1), pn�1 is maximal. Similarly, since the template semiow reverses
orientation on the right side (the strip x2), then among all the qi points on the
x2 strip, qn�1 is minimal. Thus, pn�1 and qn�1 lie on opposite sides of the gap
in the branch line, with no other strands between them. From Figure 4.4 it is
clear that one may lift the strand passing through pn�1 over the gap to qn�1,
obtaining the desired isotopy. 2
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pn�1 pn

qn�1 qn

Figure 4.4: (wx1x2)
1

is isotopic to
�
wx22

�1
.

Example 4.2.4 For example, the pair x1x
2
2x1x2 and x1x

2
2x2x2(= x1x

4
2) form

such a minimal acyclic pair. As noted above,
�
x1x

2
2x1x2

�1
is a (2,5) torus knot;

thus, so is
�
x1x

4
2

�1
.

De�nition 4.2.5 Two minimal acyclic words of the form wx1x2 and wx22 are
called a bifurcation pair. These two words have di�ering x2-parities: we denote
that with even x2-parity male and that with odd x2-parity female.

Remark 4.2.6 The reason for the terminology of De�nition 4.2.5 is as follows:
recall that the return map for H induced by the branch line can be considered as
a member of the quadratic family of maps (x1.2.3). If we then regard horseshoe
knots as periodic orbits created as one passes through a sequence of quadratic
maps, Proposition 1.2.48 implies that the male-female pair from De�nition 4.2.5
is created simultaneously in a saddle-node bifurcation. In this and the following
section, we will freely pass from thinking of �nite words in fx1; x2g as horseshoe
knots or as periodic points in the quadratic family. These \genders" reect the
role played by the knots in orbit genealogies, to be detailed in x4.3.

Lemma 4.2.3 does not imply that all knots come in isotopic pairs. Take,
for example, the period four orbit

�
x1x

3
2

�1
, whose bifurcation partner would be

(x1x2x1x2)
1
: a cyclic extension of the period two word x1x2. Evidently x1x

3
2

has no partner. Such a \pseudo-pair" is related to a period-doubling bifurcation
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within the quadratic family, in analogy to the saddle-node pairs of Remark 4.2.6:
cf. x4.3.

Other results similar to Lemma 4.2.3 are possible. The following is a corollary
to Proposition 3.1.19, easily proved in this special case by removing an \x1-loop"
via the �rst Reidemeister move:

Corollary 4.2.7 If w is minimal, then the knots corresponding to
�
xk1w

�1
are

isotopic for all k � 0.

Before stating the main theorem of this section, we need a further result which
enables us to easily determine the braid index for a class of positive braids (recall
De�nition 1.1.23).

Theorem 4.2.8 (Franks and Williams [58]) For a positive braid on p strands
containing a full twist on p strands, the braid index is p.

The proof of Theorem 4.2.8 uses Jones polynomials and is beyond the scope
of this book.

4.2.1 Horseshoe torus knots

Theorem 4.2.9 (Holmes and Williams [93]) Among the (p,q) torus knots on
H, there are:

1. exactly two resonant torus knots for each q > 2p, and in�nitely many
nonresonant torus knots of arbitrarily large period;

2. no resonant torus knots for q < 2p;

3. no torus knots at all for q < 3p=2.

In addition to supplying a speci�c instance of an in�nite collection of distinct
knot types on H (which we expect from Theorem 3.1.15), this theorem reveals
that the resonant torus knots are surprisingly sparse. It also suggests that the
additional positive half-twist on H makes it more \rigid" than the Lorenz tem-
plate L(0; 0), which contains all torus knots by Theorem 2.3.3.

Outline of proof: To prove the existence of the resonant torus pair for q > 2p,
we extract a subset S from the horseshoe template (S is not a subtemplate as
there are no branches). In Figure 4.5 we show H without its ends identi�ed. We
remove portions on the edges of the x1-branch and the center of the x2-branch
(a neighborhood of the orbit x2), yielding three strips which can be laid on a
cylinder. Identifying the ends of the cylinder, we have a torus T 2 on which S
lies.

A (p; q) resonant torus knot has q strands traveling p times meridionally
about T 2. We construct one by placing p strands on each of the two x2-strips
and q�2p strands on the x1-strip of S (see Figure 4.5). The partner is obtained
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Figure 4.5: The resonant torus knots on H.

by reversing the isotopy in the proof of Lemma 4.2.3, lifting the leftmost x2-
strand over to form the rightmost x1-strand.

To specify the words for this pair, write a string of x1's of length q � 2p
followed by two strings of x2's, each of length p. The �rst word is produced
by counting forward in multiples of p mod q: beginning at the �rst x1 and
recording the appropriate letter, each time advancing p letters and \wrapping
around" where necessary, regarding the sequence as periodically extended. The
partner derives from Lemma 4.2.3, on changing the penultimate letter from x2
to x1. The �rst x2 in the �rst group of p x2's is the ambivalent term for the
pair, denoted below by x�. Note that these words have x1's and x2's distributed
in the most uniform manner possible, subject to the required relative number
2p=q or (2p � 1)=q of x2's. Hence they are sometimes called evenly distributed
words [91].

Example 4.2.10 To determine the (3,11) resonant torus pair, write out the
prescribed string of x1's and x2's:

11� 2 � 3z }| {
x1 x1 x1 x1 x1 j

3z }| {
x2 x2 x2 j

3z }| {
x2 x2 x2; (4.1)

then, counting terms mod 11, one gets x1 x1 x2 x2 x1 x1 x2 x2 x1 x2 x2. Hence,
the resonant torus knot pair is given by (x21x

2
2)
2x1x�x2 .

Given any pair of resonant torus knots, Corollary 4.2.7 immediately yields
in�nitely many more isotopic but nonresonant ones, of periods q + 1; q + 2; : : :.
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The uniqueness proof is more complicated. The idea, due to Williams, is to
rearrange orbits on the template H in minimal or \well-disposed" braid form
and use braid index and genus invariants together with dynamical period. The
details appear in [93]; here we sketch only principal ideas.

To apply Theorems 1.1.18 and 4.2.8 in computing genera and braid indices,
we must transform orbits on H into the appropriate form:

Proposition 4.2.11 With the exception of the orbits x11 and x12 , every orbit
on H may be arranged as a positive braid having a full twist.

Proof: We �rst perform a DA-splitting on the x12 orbit, creating an isolated
source (what was x12 ) linking the DA-modi�ed template, which has a new bound-
ary component corresponding to

�
x22
�1

. This DA modi�cation a�ects only the
x12 orbit (which is to become the braid axis) and the new boundary component:
all other orbits are unchanged.

After removing the braid axis and propagating the branch line gaps back,
loops are transformed into full twists, via the belt trick, as illustrated in Fig-
ures The template is thereby transformed to a positive braid with the exception
of a loop at the top, corresponding to the x1-strip of H. For any given link
with total number of consecutive x1's bounded, we may split the x1 branch
line repeatedly as before and pull each curl out via the belt trick, producing
a subtemplate of H containing the link as a positive braid with (at least) one
and one-half full twists: more than su�cient for application of Theorem 4.2.8. 2

Equipped with this \normal form" forH and given a knot with periodic word
w = xa11 x

b1
2 x

a2
1 x

b2
2 : : : xak1 xbk2 , we de�ne syllables to be of the form xn1x2; x

n
1x

2
2;

or x22, for arbitrary n > 0. Figure and x2, each word has a unique syllabic
decomposition and each syllable corresponds to a single strand on the minimal
template. Thus, via Theorem 4.2.8 we have:

Proposition 4.2.12 The braid index of a horseshoe knot equals the number of
syllables in its word w.

Example 4.2.13 The knot x21x2x1x2x
3
1x

3
2 has braid index four via the decom-

position (x21x2)(x1x2)(x
3
1x2)(x

2
2).

To prove uniqueness of resonant torus knots, one shows that, among all braids
on p-strands which cross the branch line q times, including multicomponent links,
the members of the (p; q) torus knot pair alone maximize the genus. This is done
via Theorem 1.1.18 by maximizing the crossing number c of q-period p-braids
on the positive braid template, in a manner similar to the proof of Corollary
3.1.11. The calculations are presented in full in [93]. This completes the proof of
part (1) in Theorem 4.2.9. The proof of (2) follows from the same calculations
performed for part (1).

The proof of part (3) is simpler, and provides a nice example of the use of
knot invariants. As one can verify, the braid word for a full twist on n-strands
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Figure 4.6: Moves to obtain the minimal template (1).

is

(�1�2 : : : �n�1)n; (4.2)

and thus, a full twist contains (n� 1)(n) crossings. The minimal braid template
includes three half-twists and so any braid � with braid index b(�) = p must
have crossing number c(�) � 3

2
(p � 1)(p). Thus, applying Theorem 2.2.4 to a

(one component) knot, we have:

2g(�) � 3

2
(p� 1)(p)� p+ 1;

or

g(�) �
(p� 1)( 3

2
p� 1)

2
:

But, recalling from x1.1.4 that the genus of a (p; q) torus knot is 1
2
(p� 1)(q� 1),

we conclude that, in order to satisfy

(p� 1)(q � 1)

2
�

(p� 1)( 3
2
p� 1)

2
;

we must have q > 3p=2. 2



4.2. torus knots and bifurcation sequences 119

Figure 4.7: Moves to obtain the minimal template (2).

4.2.2 Bifurcation reversal in the H�enon map

Theorem 4.2.9 implies that for each pair of relatively prime positive integers (p; q)
with q > 2p, the ow in the suspension of the horseshoe map has a unique pair
of resonant (p; q) torus knots. We will now relate this information to bifurcation
sequences involving such orbit pairs in the H�enon map (2.12). As noted in x2.3.2,
for � > 1

4
(5 + 2

p
5)(1 + �2), the map F�;� has a horseshoe and so, suspending

this family as in Figure 2.9, we have the resonant torus knots described above.
For the case � = 1, the map F�;� becomes

F�;1 :

�
u 7! v

v 7! �u+ �� v2 ; (4.3)

an area-preserving family. Elementary calculations show that, at � = �1, F�;1
undergoes a saddle-node bifurcation, creating an elliptic �xed point which per-
sists in the interval � 2 (�1; 3). Increasing � from �1 to 3, each member of
the eigenvalue pair travels around the unit circle monotonically, taking on all
values (e2�i�; e�2�i�) beginning at (+1;+1) for � = �1 and ending at (�1;�1)
for � = 3. Using normal forms, Holmes and Williams [93] show that as the
eigenvalues of DF�;1 pass through each pair (e

2�ip=q ; e�2�ip=q) for p; q relatively
prime, q > 2p, and q � 5, the map F�;1 undergoes a generic resonant area-
preserving Hopf bifurcation, creating a pair of isotopic orbits. In the natural
suspension of the map, one uses Proposition 4.1.2 to show that this pair is a
(p; q) resonant torus knot pair. The order in which the eigenvalues pass through
the points (e2�ip=q ; e�2�ip=q) determines the bifurcation sequence. By a com-
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Figure 4.8: Moves to obtain the minimal template (3).

plicated argument involving symmetry properties of the map F�;1 and linking
data on the q-cables themselves, one shows that the resonant bifurcation pair lie
on a continuous branch of resonant torus knots which can be followed from the
bifurcation point to � arbitrarily large, thus identifying them with the unique
resonant pair and enabling one to employ the uniqueness part of Theorem 4.2.9
to arrive at the following:

Proposition 4.2.14 Given the sequence of pairs of relatively prime positive
integers f(pi; qi)g+1�1 with q > 2p and q � 5 ordered via i < j if and only if
pi=qi < pj=qj, let �

1
i be the �-value at which the natural suspension of the map

F�;1 creates the unique pair of (pi; qi) resonant torus knots. Then i < j if and
only if �1i < �1j .

For the case � = 0, the map F�;� becomes

F�;0 :

�
u 7! v

v 7! �� v2 ; (4.4)

the dynamics of which immediately collapse to those of the one-dimensional
quadratic map f� : x 7! � � x21 described in x1.2.3. Kneading theory provides
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a complete ordering of the bifurcations of f� via the kneading invariants �(w).
Here the continuation with increasing � of orbits once created is assured by
the monotonicity of the kneading invariant. One uses the algorithm given as
Example 4.2.10 of x4.2.1 to construct the words corresponding to such (p; q) res-
onant torus partners. Computing the associated kneading invariants (via (1.24)),
Proposition 1.2.48 allows us to order these resonant torus pair bifurcations. This
yields:

Proposition 4.2.15 Given the sequence of pairs of relatively prime positive
integers f(pi; qi)g+1�1 with q � 2p ordered via i < j if and only if pi=qi < pj=qj ,
let �0i be the �-value at which the natural suspension of the map F�;0 creates the
unique pair of (pi; qi) resonant torus knots. Then i < j if and only if �0i > �0j .

We note that the kneading theory behind Proposition 4.2.15 applies to any
unimodal function of v in place of �� v2 in F�;0. Thus, the conclusion holds for
a far wider class of mappings than the H�enon family.

These propositions together imply the following remarkable result [93, 87]:

Theorem 4.2.16 (Holmes and Williams [93]) In the bifurcation diagram of the
map F�;�, in�nitely many saddle-node bifurcation curves cross one another on
the (�; �) parameter plane between � = 0 and � = 1. In particular, each resonant
torus bifurcation sequence for the area-preserving case (� = 1) is exactly reversed
in the one-dimensional case (� = 0).

Thus, �xing � 2 [0; 1], and increasing �, we obtain in�nitely many di�erent
bifurcation sequences leading to a horseshoe: loosely speaking { in�nitely many
routes to chaos. However, this behavior does not imply similar reversals for
other orbits. For example, the (2,3) non-resonant torus knots of periods 4,5,6: : :
do not reverse their order in this way; instead, as an accumulating family of the
type described in Theorem 3.1.20, their bifurcation curves are all \parallel:" cf.
Holmes and Whitley [92].

4.3 Self-similarity and horseshoe cables

Given the correspondence between knotted orbits on the horseshoe template and
bifurcations of the one-dimensional quadratic family touched on in x4.2, we now
explore this latter family of maps in greater detail.

Denote by f� the map which takes x to �� x21, where f� acts on the inter-

val I(�) =
h
� 1

2
�
q
�+ 1

4
; 1
2
+
q
�+ 1

4

i
(this interval grows as � ranges over

[� 1
4
; 2]). The bifurcation set of this map has a remarkable self-similar struc-

ture: given any positive integer M , there exists at least one subset J , of the
phase-parameter space for which

fM�
��
J
� f�; (4.5)
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where � denotes conjugacy. Figure 4.9 illustrates the case M = 3: f3� restricted
to a subinterval [�; �] has the same bifurcation sequence on some ��subinterval
as does f� on [� 1

4
; 2]). This is the basis for a renormalization group theory (see

[95, 96]) which shows that bifurcation sequences are nested within themselves.
The simplest such nesting leads to the well-known period-doubling cascades
studied metrically by Feigenbaum and others (see [41, 199]).

Figure 4.9: f3� and a magni�cation.

Orbits in the quadratic map are created in a very speci�c order, governed
by the kneading invariants (Proposition 1.2.48). As we have seen in x4.2.2, a
horseshoe may be \built" through a variety of distinct paths; nevertheless, by
taking the branch line of H as a Poincar�e section for the semiow, we recover the
\full" quadratic map as a return map. Thus, as per Remark 4.2.6, we may speak
of two horseshoe knots being a saddle-node pair, based on the corresponding
theory for the one-dimensional return map.

In this section, we explore the implications of the bifurcation structures
within f� on knot and link types and on subtemplate structures within the
template H. We �rst outline an extension to the simple kneading theory intro-
duced in x1.2.3, and use it to show how certain classes of words correspond to
knots inhabiting subtemplates of H. This material is drawn from [88], in which
the idea of subtemplates �rst appeared, but the proof of the main result (The-
orem 4.3.8) is reformulated and simpli�ed in terms of the template inations
introduced in Chapter 2.

4.3.1 Kneading factorization and subtemplates

The kneading invariant introduced in x1.2.3 provides a convenient symbolic tool
for analyzing iterated structures on the template. For the horseshoe template,
the kneading invariant �(a1) of a periodic orbit a1 is a sequence given by (1.24)
which, via Proposition 1.2.48, allows one to order the �-values at which the orbits
appear in bifurcations of the one-dimensional map f�. In cases where �(a) is
periodic, we refer to it by the periodically repeated unit, with the superscript 1

dropped.
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We now describe a factorization of such kneading sequences.

De�nition 4.3.1 For w an acyclic minimal word w = w1w2 : : : wk and v any
word v = v1v2 : : : (not necessarily �nite), de�ne w � v to be the sequence of
concatenated words

w � v = wv1wv2wv3 : : : (4.6)

where
wx1 = w = w1w2 : : : wk

and
wx2 = ŵ = ŵ1ŵ2 : : : ŵk :

Recall from x1.2.3 that x̂1 = x2 and vice versa.

Example 4.3.2

x1x2 � x1x1x2 = x1x2 x1x2 x2x1
= x1x2x1x

2
2x1

x1x2 � x1x2x2 = x1x2 x2x1 x2x1
= x1x

2
2x1x2x1

x1x1x2 � x1x2x1x1x2 : : : = x1x1x2 x2x2x1 x1x1x2 x1x1x2 x2x2x1 : : :

Any kneading invariant � which can be expressed as a �-product of two or
more nonempty words is said to be �-factorizable, otherwise it is �-prime. The �-
factorization is particularly useful in describing period multiplying bifurcations.
For example, in the period-doubling bifurcation of a period-k orbit with periodic
kneading invariantw, the new orbit of period 2k has kneading invariantw�x1x2.
The �-products can be iterated to form longer, more complicated factorizations.

The self-similarity for the quadratic map f� in (4.5) is naturally expressed
in terms of kneading sequences and �-factorization (see [88]):

Lemma 4.3.3 Let u;v and w be kneading invariants, where w is �nite. Then
w � u � w � v if and only if u � v.

Proof: By Equation (4.6),

w � u = wu1wu2 : : :

w � v = wv1wv2 : : : :

Let K denote the index of the �rst letter at which u and v di�er; hence,
uK = x1; vK = x2. Since w is a kneading invariant, it follows from (1.24)
that w1 = x1. Thus, w

uK � wvK and w � u � w � v. Reversing the argument
yields the lemma. 2

Remark 4.3.4 In conjunction with Proposition 1.2.48 and Equation (1.24),
Lemma 4.3.3 implies the self-similarity in the bifurcation structure stated in
Equation (4.5). Increasing � creates periodic orbits in the order of increasing �
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from x11 to (x1x2)
1
, to (x1x2)�(x1x2), etc., ad in�nitum. For any �nite �-prime

kneading words u � v, all kneading sequences of the form u �w, for all w, must
preceed v; hence, the entire bifurcation sequence of f� is \embedded" within
itself, so that fM� restricted to some subinterval in � undergoes the \same"
sequence as f� itself.

Recall from De�nition 4.2.5 that male knots have even x2-parity and female
knots, odd x2-parity. The kneading theory for unimodal maps implies that
males are created in saddle-node bifurcations and females in either saddle-nodes
(along with males) or, partnerless, in period-doubling bifurcations. Directly
after either such bifurcation, both orbits implicated in it share the same symbol
sequence. After the saddle node, that destined to become female changes gender
via one point on it crossing the critical point c; the male's sequence remains as
it began, consistent with a positive eigenvalue. After a q ! 2q period doubling,
the doubled orbit, whose sequence, regarded as 2q-periodic, starts out male,
similarly changes gender by losing or gaining an x2 as a point of it passes c.
(Recall that the eigenvalue of the (iterated) maps are respectively 1 and �1 in
these bifurcations.) These observations imply the following (for details see [88]):

Lemma 4.3.5 Let w be a q-periodic kneading invariant. Corresponding to w

and w � x1x2, there exist two horseshoe periodic orbits, (a0)1 and (a)
1 2 �H,

such that:

1. w = �((a)
1
) = �((a0)1);

2. if w 6= u � x1x2 for any kneading invariant u, then (a0)1 and (a)
1

are a
male-female pair of isotopic period-q orbits created in a saddle-node bifur-
cation;

3. if w = u � x1x2 for some kneading invariant u, then (a0)1 and (a)
1

are
both female knots implicated in a period-doubling bifurcation and having
respective periods q and 2q.

De�nition 4.3.6 Let fwign1 denote a collection of qi-periodic kneading invari-
ants for some n > 1, and W = w1 �w2 � � � � �wn be the Q =

Qn
i=1 qi-periodic

kneading invariant formed by iterated �-multiplication. A periodic horseshoe or-
bit (a)

1
having kneading invariant �((a)

1
) =W is called an iterated horseshoe

knot with de�ning sequence W .

The factorization of kneading invariants becomes the dynamical backbone for
an elegant interpretation of self-similarity in the bifurcations of the horseshoe.
The topological analogue of the �-factorization is a generalization of the satellite-
companion construction for knots (De�nition 1.1.10):

De�nition 4.3.7 Let T be a template braided within a standardly embedded
solid torus V = D2 � S1, and let K be a knot (in a di�erent copy of S3) with
tubular neighborhood N(K) homeomorphic to V via h : V ! N(K). Then the
template given by h(T ) is a satellite of T with companion K.
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Theorem 4.3.8 (cf. Holmes [88]) Let W = w1 � w2 � � � � � wn be a periodic
kneading invariant which does not factor as u � (x1x2) for any kneading invari-
ant u. Also, denote by (a0)1 and (a)

1 2 �H the male-female pair of knots
associated to W via Lemma 4.3.5. Then, all the iterated horseshoe knots of the
form W �v coincide with the closed orbits on a particular subtemplate HW � H
which is the satellite of either the standard horseshoe template H or the \twisted"
horseshoe template ~H (pictured in Figure 4.10), with the knot corresponding to
(a)

1
as companion.

x1 x2

Figure 4.10: The \twisted" horseshoe template ~H.

Proof: Let (a0)1 be the (Q-periodic) itinerary of the male horseshoe knot having
kneading invariant �((a0)1) = W and let (a)

1
correspond to the female knot

having kneading invariant �((a)
1
) =W � x1x2 as per Lemma 4.3.5. Denote by

b be the subword a1a2 : : : aQ�2 of a (or, equivalently, a0).

Assume �rst that b has odd x2-parity; then, consider the ination

EW : H ,! H
�
x1 7! x2bx1
x2 7! x2bx2

: (4.7)

The image of this map is a template since E preserves the twist orientation of
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x11 and x12 , and since the image of the branch segments,

�1(EW(H)) = EW([x11 ; x1x2x
1
1 ])

= [((x2bx1))
1
; x2bx1x2bx2 (x2bx1)

1
];

�2(EW(H)) = EW([(x2)
2x11 ; x2x

1
1 ])

= [(x2bx2)
2 (x2bx1)

1
; x2bx2 (x2bx1)

1
]:

; (4.8)

is a set of nonoverlapping intervals on the branch line (this may be veri�ed using
the �-ordering and the fact that b is of odd x2-parity).

By Lemma 4.3.5, the knots corresponding to (a)
1

and (a0)1 on H are iso-
topic: the isotopy is merely that of Lemma 4.2.3 | the rightmost strand of the
knot for (a0)1 on the x1 strip of H is lifted over the branch line gap to the
leftmost strand of the knot for (a)

1
on the x2 strip. Since the periodic orbits

(a)
1

and (a0)1 form a \spine" for the subtemplate E(H), the isotopy may be
extended to the strip containing (a0)1. Hence, the subtemplate E(H) may be
isotoped in S3 to lie within a tubular neighborhood of the knot corresponding
to (a)

1
. This yields a presentation of HN = E(H) as a satellite template with

companion (a)
1
.

To show that HN contains precisely the iterated horseshoe knots, observe
that W and W �x1x12 are respectively the smallest and largest kneading invari-
ants of the form W � v for any v. Hence, all orbits with kneading invariants
of this form must lie between the horseshoe words having kneading invariants
W and W � x1x12 . But these correspond precisely to the boundary components
E(x11 ) and E(x2x

1
1 ) of the subtemplate.

In the case where the x2-parity of b is even, we must modify the ination E
to one which respects even and odd twisting of orbits. An analogous proof to
that above, applied to the ination

~EW : ~H ,! ~H
�
x1 7! x2bx2
x2 7! x2bx1

; (4.9)

shows that the subtemplate containing the iterated horseshoe knots is a satellite
of the \twisted" horseshoe template ~H. 2

Example 4.3.9 Let W = x1x
3
2x1, so that a0 = x1(x1x2)

2 and a = x21x
3
2. The

ination is:

Ex1x32x1
: H ,! H

�
x1 7! x2(x

2
1x2)x1

x2 7! x2(x
2
1x2)x2

:

Figure 4.11 shows that, after an isotopy, HN is a satellite of H with companion
a trefoil, having an additional four full twists.

Similarly, the net twisting for HN with W = x1x
2
2x1x2 is odd. Recalling

Example 4.2.2, the reader may like to check that this subtemplate is a satellite
of the twisted horseshoe ~H with companion a (2; 5) torus knot, having four and
one-half full twists.
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Figure 4.11: the subtemplate for W = x1x
3
2x1. (a0)1 is shown solid, (a)

1

dashed.

In this sense, the male-female pair (a0)1 ; (a)
1
give rise to a family of iterated

horseshoe knots which remain close to them in that they lie on the subtemplate
HN . We refer to (a0)1 and (a)

1
as the father and mother knots respectively;

the iterated knots are their children. From Theorem 4.3.8, we observe that (a)
1

can be viewed as the core of an embedded torus, with (a0)1 on its boundary and
all subsequent children following (a)

1
without doubling back. Hence, iterated

horseshoe knots are examples of the generalized cablings discussed in x1.1.2.

4.3.2 Nested periodic orbits and iterated torus knots

The self-similarity in the bifurcation structure of the quadratic family is not the
only example of dynamical self-similarity. A very important and well-known
class of examples is given in the KAM theory for elliptic �xed points of an
area-preserving di�eomorphism [122, 123]. Let F : R2 ! R2 and DF (�) have
eigenvalues �; � = e�2�i� with � 2 (0; 1

2
). Generically F is a perturbed twist

map with rings of alternating elliptic and hyperbolic points arranged in a self-
similar fashion. These families of periodic points are separated by invariant
\KAM curves," which form a set of positive Lebesgue measure; see [8].

There is much to be said concerning the knotting and linking of orbits in
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the suspension of such a map, or, more generally, for any Hamiltonian ow on a
constant-energy three-manifold (see, e.g.[116, 15]). In particular, since the area-
preserving H�enon map provides a speci�c example of such a map, we should
expect to see some vestige of this behaviour in the horseshoe.

We showed in x4.2.2 that, around the \primary" elliptic point, corresponding
to the (female) orbit x2, the natural suspension of the area-preserving H�enon
map has a (p; q) torus knot pair for each p < q=2. In fact, much more is true:
the self-similar structure suggested in the KAM Theorem corresponds, in the
suspended ow, to iterated torus knots of in�nitely many (but not all) types.
The simplest of these are the 2-cables created in period doubling sequences, as
expressed in the following simple corollary to Lemma 4.3.5:

Corollary 4.3.10 All female horseshoe knots are 2-cabled by some other horse-
shoe knot.

Proof: Let (a)
1
denote the itinerary of the female horseshoe knot. Then, the

periodic orbit corresponding to the kneading invariant �(a) � x1x2 is a 2-cable
of (a)

1
by Lemma 4.3.5 and Proposition 4.1.2. 2

Remark 4.3.11 Since any periodic orbit with kneading invariant of the form
w � x1x2 is female, and those orbits created in the period doubling sequence
based on the (female) orbit (a)

1
with kneading invariant w have invariants w �

x1x2; w�x1x2�x1x2; : : : , any �nite part of every period doubling sequence forms
an iterated 2-cable of (a)

1
. Formulae describing crossing and linking numbers

of such structures may be derived. For example, see [88] for a presentation of
the period-doubling cascade results of Yorke and Alligood [198, 199] in knot-
theoretic terms.

We now move to more general iterated torus knots. To proceed, recall the no-
tion of type numbers following De�nition 1.1.10. We call an iterated (horseshoe)
torus knot of type f(p1; qi)g (with pi < qi; 8i) resonant if its type numbers qi
coincide with the periods qi of the kneading invariantswi in its de�ning sequence
W .

Theorem 4.3.12 (Holmes [88]) Among the iterated horseshoe knots, each �nite
sequence f(pi; qi)gn1 of positive integers with pi; qi relatively prime and pi=qi <

1
2

determines a unique pair of resonant iterated torus knots of type f(bi; qi)gn1 where
b1 = p1 and

bi+1 = qi+1qibi + (�1)ipi+1: (4.10)

This result is essentially an iterated version of Theorem 4.2.9. It is proved by
identifying the appropriate iterated horseshoe knots via their words and factored
kneading invariants, and placing them correctly on the subtemplates of Theorem
4.3.8. The words are �-multiplied analogues of those for the simple torus knots
of Theorem 4.2.9, and uniqueness follows by alternately maximizing and mini-
mizing crossing numbers and appealing to Theorems 2.2.4 and 4.2.8. (Here, the
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embedded subtemplates are su�ciently twisted for one to apply Theorem 4.2.8
directly; no elaborate surgery as in Figure 4.6 is required.) The argument is
lengthy and not particularly illuminating; for details and data on the associated
kneading invariants and linking numbers see [88].

We close with a summary of orbit genealogies for the natural suspension of
the horseshoe map. Generically, orbits appear as male-female pairs in saddle-
node bifurcations, or as single female knots in period-doubling bifurcations. The
female knots are \mothers," each of which forms the core of a subtemplate hav-
ing the associated \father" knot as a boundary component. The mother is
a companion (in the sense of De�nition 1.1.10) to her in�nitely many \chil-
dren:" generalized cables which live on her subtemplate. Approximately half
of these knots are female, and as such, proceed to form sub-subtemplates sup-
porting in�nitely many grandchildren, etc. Since each subtemplate is a twisted
and (perhaps) knotted copy of the original, the bifurcation sequences on each
subtemplate are miniature copies of the original but yield knots increasing in
complexity. Not only are the individual orbits knotted and linked, but the sub-
templates containing certain lineages of orbits are also twisted and linked about
one another.

4.4 Homoclinic bifurcations

We now turn to some knot and link structures associated with global bifurcations
involving homoclinic orbits to hyperbolic saddle points in three dimensional
ows:

_x = f(x): (4.11)

Suppose the saddle point lies at x = 0 (f(x) = 0) and let �i denote the eigen-
values of the linearization Df(0). There are many possible cases to consider,
for real and/or complex eigenvalues, and expanding or contracting ows, and we
shall only give a brief sample of results. We start with the real, contracting case,
summarising some results from [91], which the reader should consult for further
detail.

4.4.1 Gluing and torus knots

Suppose that Df(0) has three real eigenvalues with the single expanding eigen-
value �u > 0 weaker in magnitude than the two contracting eigenvalues: ��ss >
��s > �u > 0. We assume that both branches of the one-dimensional unstable
manifoldW u(0) lie in the two-dimensional stable manifoldW s(0) and denote by
� the set W u(0)[ f0g. This is a codmension two bifurcation, generically occur-
ring at isolated points in parameter space for a two-parameter family of vector
�elds f(x;�1; �2) (i.e., no symmetries are present). Letting (�1; �2) = (0; 0) be
such a point and varying (�1; �2), the degenerate case unfolds to the gluing bifur-
cation, in which up to two periodic orbits bifurcate from the double homoclinic
loop � [63, 72].
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Before stating the principal result, we must develop a little machinery. De-
note the two loops of �: x1 and x2. The bifurcating periodic orbits may follow
x1 and/or x2 many times before closing, giving a natural description as a word,
much as in the symbolic description of templates. Those words which actually
occur determine the unfolding. [63, 72] prove that any periodic orbit bifurcating
from � must have a rotation compatible word.

De�nition 4.4.1 An in�nite (�nite) word in two symbols is rotation compatible
if it can be represented as the (�nite periodic) itinerary of an orbit of a rigid
rotation map �� : z 7! (z + �), z 2 S1, with the Markov partition I(x1) =
(0; 1� �], I(x2) = (1� �; 1] for some � 2 [0; 1). The unique � for such a word is
its rotation number .

Remark 4.4.2 To compute the rotation number of a given �nite rotation com-
patible word, take the number of x2's and divide by the total length of the
word: e.g., x21x2x1x2 ) � = 2

5
. The rotation compatible words are precisely the

\evenly distributed" words of Theorem 4.2.9. Finally, we recall that two rational

numbers p
q
and p0

q0
are Farey neighbors if j pq0 � qp0 j= 1.

Theorem 4.4.3 (Coullet et al. [63, 72]) For every su�ciently C1-small pertur-
bation of f(x; 0; 0) there are at most two periodic orbits in a small neighborhood
N of �. Any such periodic orbits are attracting and have rotation compatible
words, and, if there are two, their rotation numbers are Farey neighbors.

The proof uses the eigenvalue condition, which implies that a small neighbor-
hood of � is positively invariant and so contains an attractor, even after (small)
perturbation. De�ning cross sections near 0, one shows that the resulting return
map is a (discontinuous) contraction. This, together with the fact that the at-
tractor lies within the closure of the one-dimensional unstable manifold W u(0),
of which there are two branches, implies that there are at most two stable pe-
riodic orbits for any given parameter pair (�1; �2). The admissible words are
constructed via a reduced (one-dimensional) return map, which is e�ectively a
discontinuous mapping of the circle. Note that there may be two, one, or no
periodic orbits: both branches of the unstable manifold may limit on an \irra-
tional" curve which winds repeatedly about, never closing.

Thus, unlike the expanding Lorenz ow, which is also related to a double
homoclinic connection, gluing bifurcations create isolated periodic orbits char-
acteristic of Morse-Smale ows (cf. Appendix A). The interest here is in de-
scribing how the rotation compatible periodic orbits succeed one another as the
parameters (�1; �2) vary, and which knots and links they form. To determine
the latter we will construct \templates" for the ows, relaxing the expansiveness
demanded by the de�nitions of x2.2 to include contracting ows.

There are two distinct topological con�gurations, depending upon which sides
of W s(0) the homoclinic orbits reenter: these are the �gure-of-eight and the
buttery, shown in Figure 4.12. For both systems, we assume the existence
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of a strong stable foliation (reported in [72] to be a generic condition in these
cases) and collapse out as in the proof of Lemma 2.2.7, leaving a (contracting)
template. Alternatively, these branched manifolds may be viewed as embedded
suspensions of one-dimensional noninvertiable return maps.

(a) (b)

Figure 4.12: (a) The �gure-of-eight and buttery con�gurations, and (b) asso-
ciated templates.

Embedding these templates in R3, we must incorporate the \twist" of the
ow around the homoclinic connections, which leads to twisting of the template
strips. Temporarily ignoring full (even) twisting of each strip and excluding
non-trivially knotted embeddings, there are three intrinsic cases to consider:
untwisted : �1 = �2 = 0; singly-twisted : �1 = 0; �2 = 1; and doubly-twisted :
�1 = �2 = 1, also illustrated in Figure 4.12. Below we give results only for the
buttery case: the �gure-of-eight, whose template is unbranched, is somewhat
simpler. For details see [91].

Case (1) untwisted: �1 = 0; �2 = 0

Using the theory of circle maps (one views the Poincar�e map as a monotone
injective map of the circle with a single discontinuity), in [72, 65], it is proved
that this system has at most one periodic orbit. As an addendum to this, we
have:
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Proposition 4.4.4 Any periodic orbit appearing in the unfolding of an un-
twisted buttery is a torus knot. If the rotation number of the word is � = p

q+p
,

then the corresponding knot type is (p; q).

Proof: Note that, although the dynamics of the contracting buttery system
di�er greatly from that of the expanding Lorenz ow, the associated templates
are isotopic, and their labeling by x1; x2 consistent. We shall extract a subset
containing the given rotation compatible word from the Lorenz template L(0; 0)
and show that it embeds in a torus. This, together with Theorem 4.4.3, proves
the claim, and also proves the last statement in Theorem 2.3.3.

Pick a word with p x1's and q x2's and assume that p > q (If q > p, ip
L(0; 0) about the vertical axis and proceed by symmetry). Then, since the word
is evenly distributed, there are no consecutive x2's and each trip about the x2-
strip is immediately followed by a trip about the x1-strip. The orbit in question
therefore lies on an unbranched subset S � L(0; 0) that may be isotoped as in-
dicated in Figure 4.13, from which it is clear that it winds p times longitudinally
and q times meridionally around a torus T 2. (For this case �1 = 0, but note for
later use that one can make the same isotopy moves, simply carrying the �1 half
twists along, since the split does not extend that far.) 2

p� q

qp

p� q

q

Figure 4.13: The subset S � L(0; 0) �ts on a torus T 2. The labels refer to the
number of strands on each strip.

Example 4.4.5 The words x21x2x1x2 and x1x
2
2x1x

3
2 correspond to (2; 3) and

(5; 7) torus knots respectively. Note that the mapping from words to torus
knots di�ers from that on the horseshoe template H = L(0; 1), described in the
proof of Theorem 4.2.9.
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Observe that this result merely proves that if an orbit with the given word
exists, then it is a torus knot of the type speci�ed. To �nd such orbits, one has
to tune the parameters (�1; �2) appropriately, as speci�ed in the bifurcation di-
agrams of [72, 65] and summarised in [91]. Between each pair of (disjoint) open
sets (�1; �2) giving rise to torus knots of Farey neighbor types (p; q), (p0; q0) ,
there is a set having knots of type (p+p0; q+q0): the Farey mediant. In this way,
passing across the parameter plane, one exhausts all torus knots. Intuitively, we
are moving the thin incoming strips along the branch line of the contracting
template to match up, one by one, the \ends" of the torus knots which all co-
exist on the expanding Lorenz template L(0; 0).

We briey consider the impact of introducing �1 (even) positive half-twists
along the x1 branch. The proof of Proposition 4.4.4 may be modi�ed to cope
with this case, as already indicated. Even if �1 is non-zero we may perform the
same moves without interference from the additional half-twists. Then, since �1
is even and there are 1

2
�1 full twists, we obtain a (p; q + 1

2
p�1) torus knot (to

check this, refer to the positive braid genus formula of Equation (1.4)). A similar
argument for �1 = 0 and �2 even yields a (p+ 1

2
q�2; q) torus knot.

If both �1 and �2 are simultaneously non-zero and even, the resulting subset
S can still be presented as a positive braid on p strands, but it is no longer
a torus knot, for there is additional twisting on the strip carrying q strands.
Indeed, it does not appear to belong to any well-known knot family. A picture
and genus formulae for this case appear in [91].

Case (2) singly- and doubly-twisted: �1 = 0; 1; �2 = 1

In these cases one can use contraction and orientation-reversal properties of
the one-dimensional return map induced by the semiow, along with template
surgery analogous to that of Figure 4.13, to prove the following rather restrictive
result:

Proposition 4.4.6 ([91]) If the x2-branch of the buttery template has a half-
twist (case (2)) then all periodic orbits appearing on it must have words x1 or
xk1x2 (k � 0). The same holds reversing x1 and x2. If both branches have half
twists (case (3)), then only x1, x2, and x1x2 may appear. Any periodic orbit
appearing in the unfolding of either case is an unknot.

Remark 4.4.7 The signi�cance in the knotting and linking of orbits implicated
in gluing bifurcations lies not so much in extracting bifurcation invariants (for
these bifurcations are fairly well-understood), but in displaying the general prin-
ciple that simple dynamics are coupled with the existence of simple knots and
links. The fact that only torus knots can occur in a buttery-gluing bifurcation
(in which the ows are all zero-entropy) is in stark contrast to the analogous
positive entropy Lorenz ow, in which an in�nite array of knot types coexist: cf.
Theorems 3.1.15 and A.1.13.

The next example of global bifurcations exhibits an opposite extreme of topo-
logical complexity.
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4.4.2 Silnikov connections and universal templates

We now return to the example presented in x2.3.3: a radically di�erent type of
global bifurcation, originally studied by Shil'nikov [160, 161] (cf. [179] and the
textbooks [76, 188, 189], which also contain these and related results). The ma-
terial below is adapted from [71]. Recall the de�nition of a Shil'nikov connection,
De�nition 2.3.8, and the associated Theorem 2.3.9: that a countable collection of
suspended horseshoes lives in a tubular neighborhood of a Shil'nikov connection.

Sketch of proof of Theorem 2.3.9: We construct Poincar�e sections transver-
sal to � near the �xed point p and linearize the ow near p and along � to
obtain approximate return maps. The horseshoes are constructed by owing
pairs of boxes near p and then along �. The �xed point has a one-dimensional
unstable manifold W u(p) and a two-dimensional stable manifold W s(p), along
which � =W s(p)\W u(p) spirals into p. (Although we consider only the case in
which W u(p) is one-dimensional, our results apply equally well to W u(p) two-
dimensional andW s(p) one-dimensional, since this amounts to a reversal of time
which leaves periodic orbits invariant.)

��0

�1

W s(p)

�1

�0

�+
0

Figure 4.14: Cross sections and maps near the �xed point p.

We construct Poincar�e sections �0 and �1 transverse to � and su�ciently
close to p that linear analysis provides a good estimate of the return map. The
surface �0 is bisected by W

s(p) into upper (�+
0 ) and lower (�

�
0 ) halves. We use

a cylindrical coordinate system having origin at p and with �0 at constant r and
�1 at constant z = �� 1 (this is the convention of [76] | one may just as well
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choose �0 at constant � [74, 189]): see Figure 4.14. The return map factors into
the \local" map �0 : �

+
0 ! �1, which is concentrated near p, and the \global"

map �1 : �1 ! �0, which follows orbits along near �. Hypotheses (1) and (2)
permit us to construct approximations to these maps.

Taking �0 and �1 close enough to p, the ow linearised at p,

r(t) = r0e
��st

�(t) = �0 + !t (4.12)

z(t) = z0e
�ut;

provides a good approximation of �0. Solving z(T ) = � for T , we obtain the
transit time for orbits leaving �0 to reach �1:

T (z) =
1

�u
log

�

z
: (4.13)

This yields an expression for the local return map �0:

�0 : (r0; �; z) 7!
�
r0

� �
z

��s=�u
; � +

!

�u
log
� �
z

�
; �

�
: (4.14)

Restricting to a su�ciently small neighborhood of � \ �1, one can assume
that the global return map �1 is a�ne. This yields an analytical approximation
to the Poincar�e map given by composition of (4.14) with an a�ne map. Such
composed maps have been analyzed repeatedly [160, 161, 74, 66].

The action of �0 on a segment of constant � is to stretch it and wrap it around
� \�1 in a logarithmic spiral. Since z = 0 is on W s(p), the image of �0(r; z) as
z ! 0 approaches � \�1. This image is then mapped a�nely back to �0, with
�1(� \�1) = � \ �0: see Figure 4.14.

One now examines the action of �1�0 on rectangular strips:

Bi = f(�; z) � �+
0 : ai � z � big; (4.15)

where the sequences faig and fbig satisfy ai < bi < ai�1 and limi!1 ai = 0. For
appropriate choice of numbers fai; big, it can be shown [76, 188, 189] that the
image of each adjacent pair fBi [Bi+1g under �1�0 intersects Bi [Bi+1 to form
a hyperbolic horseshoe (see e.g. Theorem 4.8.4 of [189]): see Figure 2.11(b).
These pairs are the horseshoes of Theorem 2.3.9. 2

We now develop a geometric treatment based on the analysis sketched above
(cf. [5]), which will allow us to extract the desired templates and prove that the
ow in a neighborhood of a double Shil'nikov connection contains representatives
of all knots and links.

Single Shil'nikov templates

The horseshoes of Theorem 2.3.9 are hyperbolic, so we may collapse along the
stable foliations and, carefully following the embedding, construct the embedded
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template. We proceed in two steps, according to the two components of the
return map �1�0.

First, the action of the global map �1 is a�ne and takes the image under
�0 of the \horizontal" Bi � �+

0 to a \vertical" strip in �0. Collapsing in the
contracting direction of the map �0�1, each box Bi � �+

0 becomes a vertical
interval fai � z � big at a �xed r. Thus, the collapsed Bi and Bi+1 boxes are
disjoint within �+

0 . Their images, however, are vertical lines which cover �0;
hence, the two strips are joined at a branch line.

Since �1 is a�ne, there is no additional folding. Therefore, instead of col-
lapsing the stable direction out to obtain a branch line in �+

0 , we can propagate
the branch line back via ��11 to depict the joining of these strips within �1, as
in Figure 2.12(b). The impact of �1 on the topology of the suspension is en-
coded in the twist of � between �1 and �+

0 (cf. Remark 1.2.18). For N a small
tubular neighborhood of � excluding a small neighborhood of p, W s(p) \ N is
a two-dimensional strip which may twist any number of times about �. Since
�1�0(Bi) transversally intersects W s(p), the template inherits this same twist:
see again Figure 2.12(b).

The action of the local map, �0, is to stretch Bi out along what was the
z-direction in �+

0 and compress Bi along what was the �-direction. The image
of �0(�

+
1 ) is a thin spiral (imagine thickening that in Figure 4.14). The image of

any consecutive pair Bi; Bi+1 lies within a folded strip: a horseshoe. As the box
Bi � �+

1 ows through a neighborhood of p to reach �1, it is wrapped around
� an integer number of half-turns, Bi+1 being wrapped with one more half-turn
than Bi. Indeed, the winding which occurs near p is revealed by Eqn. (4.14).
As detailed in [188, 189], the boxes Bi can be chosen such that

ai = �e��i�
u=!: (4.16)

Hence,

�� � !(T (ai+1)� T (ai)) (4.17)

=
!

�u

�
log

�

ai+1
� log

�

ai

�
= �;

and the action of the ow of Bi+1 from �+
0 to �1 is to wind about � in the �

direction by an additional �, compared to Bi. This is shown in Figure 4.15.

Remark 4.4.8 The strips drawn in Fig. 4.15 are shown with minimal twisting;
however, there is no guarantee that the \topmost" Bi, which su�er the least
twist, satisfy the hyperbolicity conditions necessary for Theorem 2.3.9. We only
know that for i (and hence, twist) su�ciently large, pairs of boxes Bi[Bi+1 can
be chosen so that their images form hyperbolic horseshoes.

We may now classify the types of horseshoe templates which appear near
�. For i some �xed integer, consider the template formed by collapsing the
contracting directions of the ow of the boxes Bi and Bi+1. In a neighborhood
of p, the strip corresponding to Bi (resp. Bi+1) winds about � with i (resp.
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Figure 4.15: A \simple" Shil'nikov horseshoe.

i+1) half-twists. The strips join at �1 in a single strip which follows � back to
�0, undergoing a further M half-twists, for some �xed (but unknown) M .

If we assume that the homoclinic connection is unknotted, the template thus
obtained depends only on the depth of the horseshoe, i, and the �xed global
twisting, M . Up to homeomorphism, there are two types, depending upon the
parity of � � i+M . The template H� is shown in Figure 4.16: for � even, this
is homeomorphic (though not isotopic!) to the standard horseshoe template H
(cf. Figure 2.9), and for � odd, this is homeomorphic to the \twisted" horseshoe
template ~H of Figure 4.10. For any �, H� is isotopic to H with � additional
half-twists inserted after the branch line.

For a given ow, the global twisting M and the minimum depth i of its
horseshoes are e�ectively uncomputable; hence, one cannot rigorously conclude
the existence of any particular H� for a �xed system, only for � greater than
some (unknown) lower bound. We will now bypass this problem by considering
a double connection which induces equal positive and negative twisting and
cancelling the two unknown twists.

Double Shil'nikov templates

De�nition 4.4.9 A function f : Rn ! R
n is equivariant with respect to a

function 	 : Rn ! R
n if 	f(x) = f(	(x)) for all x 2 Rn.

We shall consider Shil'nikov connections in which the vector �eld of the
di�erential equation _x = f(x) is equivariant under a symmetry of one of the
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�

Figure 4.16: The single loop Shil'nikov horseshoe template H�.

following forms:

	 : (x; y; z) 7! (�x;�y;�z)
	 : (x; y; z) 7! (�x;�y; z) : (4.18)

Such symmetries are quite common: the Lorenz system exhibits the second type
[114, 76]. If the system additionally has a �xed point, p, satisfying the condi-
tions of Theorem 2.3.9, the ow will appear as one of the three cases shown in
Figure 4.17, displaying either a pair of homoclinic spirals at p = 	(p), or a spiral
heteroclinic cycle connecting p and 	(p) 6= p. Naturally, an analogue to Theo-
rem 2.3.9 holds in this case, with the added ingredient of \coupled horseshoes"
[75, 86, 16].

We now extend the arguments given above for the single loop case to the
double loop homoclinic orbit of Figure 4.17 [left], having the �rst symmetry
of equation (4.18), so that the loop � has a partner �0 = 	(�). (The other
heteroclinic cases can be dealt with similarly: see [71] for details.) As in the
single loop case of Figure 4.14, we de�ne Poincar�e sections �0 and �1, but now
along with their images under 	: �00 and �01. Note that �1 is above the saddle
and �01 below, and �0 and �00 on opposite sides. Using the same linear and
a�ne approximations as before, we derive two local and two global return maps
�0 and �

0
0 and �1 and �

0
1, but in this case we de�ne strips Bi � �0 and B

0
i � �00,

so that �0(Bi) � �0, �
0
0(B

0
i) � �00, �1(�1) � �00 and � 01(�

0
1) � �0. Thus we

restrict our attention to orbits which make double traverses of a neighborhood
of � [ �0, tracking the two loops in regular succession.

Following the construction for the single loop case, we produce the template
of Figure 4.18, in which the strip leaving the upper branch line in �1 connects to
�00, and that leaving the lower branch line in �01 connects to �0. The resulting
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Figure 4.17: Three symmetric homoclinic con�gurations.

template has two branch lines and contains a copy of the single loop template
H� of Figure 4.16 followed by its image under 	. Since 	 reverses orientation
(det(D	 = �1)), the sense of twist in these two components is opposite; indeed,
whatever the depth i, we may collect all the \extra" twisting of the upper com-
ponent as a group of � = i +M positive half twists and that of the lower as
� negative half twists. These twists may clearly be cancelled exactly, leaving a
pair of \simple" horseshoe templates, one positive and one negative, as shown
in Figure 4.18. We call the resulting template Z .

Remark 4.4.10 We assume that the homoclinic/heteroclinic connections in-
volved in the double Shil'nikov connection are unknotted. Otherwise, the tem-
plate Z might be nontrivially knotted, obstructing our �nal step below.

ODEs which generate all knots and links

The template Z , which appears near the double Shil'nikov loop, shares the
richenss of the templates of x3.2:

Lemma 4.4.11 The template Z is universal: it contains an isotopic copy of
every knot and link.

Proof: The symbolic ination I given by

I : V ,! Z

8>><
>>:

x1 7! x2x4
x2 7! x1
x3 7! x4x2
x4 7! x3

; (4.19)

de�nes a map from V into Z . The astute reader will note that the images of
the periodic orbits (x1)

1
and (x3)

1 2 V map to (x2x4)
1
= (x4x2)

1
in Z : the
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x1 x2

x3 x4

+�

��

Figure 4.18: The double loop Shil'nikov horseshoe template Z , before (left) and
after (right) cancelling the opposite twists.

same orbit. While this precludes Equation (4.19) from satisfying the de�nition
of an ination (the image is not a proper subtemplate), we may nevertheless
disregard this anomaly by performing a DA-splitting of Z along (x2x4)

1
and

proceeding as usual. The orbit (x2x4)
1

is an unknot and there are many more
unknots in the template. Figure 4.19 shows that the subtemplate de�ned by I
is isotopic to V . 2

As a corollary, we obtain the following remarkable:

Theorem 4.4.12 Su�cient conditions for a third-order ODE to contain peri-
odic orbits representing all knot and link types are that the vector �eld is su�-
ciently C1-close to a vector �eld satisfying the following four conditions:

1. There exists a �xed point p for the vector �eld, and the linearization Df jp
at p has eigenvalues f��s � !i; �ug, with

�u > �s > 0 ! 6= 0: (4.20)

2. The ow �t is equivariant under one of the following symmetries:

	 : (x; y; z) 7! (�x;�y;�z)
	 : (x; y; z) 7! (�x;�y; z) : (4.21)

3. There exists an orbit �(t) with limt!�1 �(t) = p and limt!1 �(t) = 	(p).
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Figure 4.19: V is a subtemplate of Z .

4. The homoclinic/heteroclinic loop(s) is(are) unknotted.

The constructions preceeding the proof of Theorem 4.4.12 above actually
show that, as one approaches the degenerate double loop, one can pick succes-
sively smaller tubular neighborhoods of the double loop which contain in�nitely
many copies of representatives of every knot and link equivalence class.

Thanks to the work of Chua et al. [38], we can even display an explicit
example of a three-dimensional system which contains a universal template:

Corollary 4.4.13 There exists an open set of parameters � 2 [6:5; 10:5] for
which the set of periodic solutions to the di�erential equation

_x = 7[y � �(x)];
_y = x� y + z;
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_z = ��y; (4.22)

�(x) =
2

7
x� 3

14
[jx+ 1j � jx� 1j] ;

contains representatives from every knot and link equivalence class.

Proof: In [38], it is shown that equation (4.22) satis�es the requirements of
Theorem 2.3.9 for the parameter � in the range indicated. (While this system
is piecewise linear, the construction of the hyperbolic set avoids points at which
the derivatives are not de�ned, much as the classical construction of Smale's
horseshoe in Example 1.2.28 excludes orbits which enter the preimage of the
bend, where the map is strongly nonlinear.) Moreover, the homoclinic connec-
tions are both unknotted. A symmetry 	 of the �rst type (4.18) clearly holds for
Equation (4.22), so that the template Z is embedded in the ow. Lemma 4.4.11
then yields the conclusion. 2

Remark 4.4.14 For parameter values of � su�ciently small, the ow given by
Equation (4.22) has periodic orbit set consisting of two (symmetric) unknotted
separable attractors. Hence, increasing the parameter � gives a bifurcation se-
quence which builds all knots and links from these two \seeds." In contrast to
the H�enon maps of x4.2.2, very little is known about the ordering of bifurcations
and knot types in this sequence.

Having given examples in this chapter of knot and link structures which arise
in speci�c ows and the templates associated with them, we now return to more
general questions regarding templates themselves, viewed in isolation from their
connections to di�erential equations.



Chapter 5: Invariants

Recall the fundamental problem in knot theory: when are two knots (links)
equivalent? An analogous problem presents itself: when are two templates equiv-
alent? We must �rst, however, carefully state what equivalence we want, since
we are chiey interested in the knots and links that inhabit a template, as op-
posed to the branched manifold itself. With this is mind, we proceed with a
suitable de�nition of equivalence.

Recall that many orbits in a template's semiow exit the template. Periodic
orbits of course remain on the template forever, but so do asymptotically periodic
and certain other orbits. Those points whose forward trajectories never exit the
template comprise the chain-recurrent set of the template (cf. De�nition 1.2.11
and the orbits which never leave the Smale horseshoe map.)

De�nition 5.0.1 Two embedded templates in S3 are equivalent if they are
connected by a �nite sequence of the following template \moves:"

1. Ambient isotopy on the template;

2. The split move; and

3. The slide move.

The split and slide moves are illustrated in Figure 5.1.

Remark 5.0.2 The reader might feel the slide move is just an isotopy. But,
when the branch lines momentarily coincide, the object obtained is not techni-
cally a template according to De�nition 2.2.1.

Remark 5.0.3 All three of the above moves induce an isotopy on the chain-
recurrent set of a template.

The standard invariants of topology (e.g., the fundamental group) are altered
by the split move. Hence, we must search for other means to construct invari-
ants of templates. We give two brief examples of template invariants which are
topological in nature.

Perhaps the simplest invariant is orientability. By orientation we mean a
coordinate system that can be translated about by the ow. The horseshoe
template H contains a smooth M�obius strip of ow lines, and hence is nonori-
entable as a template. The Lorenz template is orientable in this sense. No �nite
sequence of template moves can take an orientable template to a nonorientable
template.

143
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 a b c b c

d d

a

a b

c d c d

a b

Figure 5.1: Template moves: slide (above) and split (below)

The link of closed orbits in the boundary of a template (perhaps empty)
is not changed by either template move and is thus an invariant. Even the
framing of the boundary link is invariant: the twisting of the unit tangent bundle
restricted to the boundary link is unchanged by template moves. Other loops in
the boundary of a template can be used to produce invariants. Consider loops
with one cusp (see Figure 5.2). The split move can only create or destroy loops
with two cusps. However, we need to be careful in how we count loops with
one cusp; we can use the cusp only once. Otherwise the split could a�ect the
counting of one cusp loops. In fact for every n 6= 2 the number of boundary
loops with n cusps is an invariant. Of course, all this requires that the charts
be attached smoothly and that the exit sets of the split charts be smooth. This
can always be done. We record these observations below.

Lemma 5.0.4 Given T � S3 an embedded template, the set of closed orbits
which lie within the boundary of T , considered as a framed link, is an invariant
of T . Furthermore, if we consider @T as a smooth graph, then loops which do
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not have exactly two cusp points are invariant.

split move

Figure 5.2: Counting boundary loops

Example 5.0.5 The Lorenz template has two unknotted unlinked orbits in its
boundary. The horseshoe template has one closed orbit and one loop with a
single cusp; these loops are also unknotted and unlinked.

Corollary 5.0.6 A complete template invariant yields a complete knot invari-
ant.

Proof: Given any knot K, let TK denote the embedded template obtained from
the horseshoe template by re-embedding the x1 strip so that the orbit x11 has
knot type K with zero twist. Then, since the boundary link of T is precisely the
knot K, the ability to distinguish any two such templates implies the ability to
distinguish the boundary knots. 2

In the next section, we begin with an invariant derived solely from dynamical
data (i.e., the embedding of the template is not considered). In x5.2, we extend
this invariant to one which accounts for orientations of the strips in a template.
Then, in x5.3, we turn to the �-function of a ow as a means of counting twists
of embedded orbits, thereby constructing a dynamical invariant sensitive to em-
bedding. In x5.4 we discuss another type of �-function that encodes linking
information in Lorenz templates.

5.1 Classifying suspended subshifts

The underlying dynamics on a template are the suspended subshifts of �nite
type, as discussed in x2.2. Two suspensions of subshifts of �nite type are topo-
logically equivalent if there is a homeomorphism between them that takes orbits
to orbits and preserves the ow direction. Our goal in this section is to describe
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a classi�cation theorem for suspensions of subshifts of �nite type with respect to
ow equivalence. Any invariant of suspensions of subshifts of �nite type is au-
tomatically an invariant for templates. Such invariants are abstract in the sense
that they are insensitive to the embedding of the template in 3-space. Of course
the knot types of the orbits change under di�erent embeddings. Invariants which
are sensitive to the embedding will be described in x5.3 and x5.4.

In De�nition 1.2.20 we associated to every subshift of �nite type a transition
matrix A with entries all zeros and ones. This restriction is unnecessary and
in this chapter we will merely require transition matrices to be nonnegative
integral square matrices. In the vertex graph description of Remark 1.2.22, this
is equivalent to allowing multiple edges between vertices (cf. [53, Chapter 3]).

De�nition 5.1.1 A nonnegative n�n matrix A is irreducible if for each integer
pair (i; j) with 1 � i; j � n, there is a integer p � 1 such that the (i; j) entry in
Ap is nonzero. For subshifts of �nite type this means that we can get from any
given Markov partition element to any other (or the same) partition element by
iterating the shift map �.

Irreducible transition matrices correspond to subshifts of �nite type with a dense
orbit (cf. Corollary 3.1.17); that is, there is a single basic set.

De�nition 5.1.2 Two nonnegative square integer matrices, A and B are strong
shift equivalent A

s� B, if there exist nonnegative square integer matrices A =
A1; : : : ; Ak+1 = B and nonnegative integer (not necessarily square) matrices
R1; S1; : : : ; Rk; Sk such that Ai = RiSi and Ai+1 = SiRi for i = 1; : : : ; k.

This \move" corresponds to making certain changes in the choice of the
Markov partition. Roughly speaking we can relabel partition elements, re�ne
them (i.e., choose smaller disks) or combine them (i.e., choose bigger disks).
The next theorem asserts that this su�ces to generate conjugacy.

Theorem 5.1.3 (Williams [191]) Suppose A and B are nonnegative square
integer matrices and �A and �B are the corresponding subshifts of �nite type.
Then �A is topologically conjugate to �B if and only if A is strong shift equivalent
to B.

A concise proof of Theorem 5.1.3 can be found in [53, Appendix A].

Remark 5.1.4 Any nonnegative square integer matrix is strong shift equivalent
to a square matrix whose entries are just zeros and ones.

Example 5.1.5 Let A =

�
1 1
1 0

�
, and B =

2
4 1 1 0

0 0 1
1 1 0

3
5.

Then using R =

�
1 1 0
0 0 1

�
, and S =

2
4 1 0

0 1
1 0

3
5 ; we get A = RS and

B = SR. In this example the sequence length, sometimes called the lag, was
just one | such luck is rare.
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Exercise 5.1.6 Show that [2]
s�
�
1 1
1 1

�
.

Exercise 5.1.7 Prove that any relabeling of the elements of a Markov partition
can be realized by strong shift equivalence.

Two irreducible nonnegative square integral matrices are ow equivalent if
the suspensions of the corresponding subshifts of �nite type are topologically
equivalent. The suspension of a subshift of �nite type corresponding to a per-
mutation matrix is a �nite collection of closed orbits. Irreducible permutation
matrices are thus said to form the trivial ow equivalence class. In order to char-
acterize the ow equivalence classes of irreducible nonnegative square matrices
we need an additional \move" know as expansion equivalence. The idea is that
we can change a Markov partition by adding a new partition element \parallel"
to an current one. That is the new partition element is a forward (or backwards)
translation via the ow of a current partition element.

De�nition 5.1.8 Two square matrices A and B are expansion equivalent, A
e�

B, if

A =

2
64
a11 � � � a1n
...

...
an1 � � � ann

3
75 and B =

2
666664

0 a11 � � � a1n
1 0 � � � 0
0 a21 � � � a2n
...

...
...

0 an1 � � � ann

3
777775 ;

or vice versa.

Here A
e� B represents expansion along the �rst partition element. But, since

renumbering the partition elements can be realized by strong shift equivalence,
this is the only expansion we need consider.

Parry and D. Sullivan showed that these two moves | strong shift equiva-
lence and expansion equivalence | generate ow equivalence [141].

Theorem 5.1.9 (Parry and Sullivan [141]) Two nonnegative square integer ma-
trices A and B are ow equivalent if and only if there exist a �nite sequence
of square nonnegative matrices A = A0; A1; : : : ; Ar = B with Ai

s� Ai+1 or

Ai
e� Ai+1 for i = 0; :::; r � 1.

As a corollary, we obtain our �rst dynamical invariant.

Corollary 5.1.10 If A and B are ow equivalent then det(I�A) = det(I�B).

Proof: The proof is an exercise, though beware of sign errors. 2

Bowen and Franks [27] developed another invariant of suspensions of subshifts
of �nite type, working at least initially from a di�erent point of view. Using an
n� n transition matrix A they consider the group

GI�A = Z
n=(I �A)Zn:
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Theorem 5.1.11 (Bowen and Franks [27]) If A and B are ow equivalent then
GI�A �= GI�B .

Outline of proof: Let A be an n � n integer matrix. Consider the action of
A on the n-torus Tn. The �xed points of A form a subgroup of Tn under vector
addition (mod 1). The �xed point subgroup is also given by the kernel of the
map (I�A) : Tn ! Tn. By a standard duality theorem the kernel is isomorphic
to the co-kernel of the map (I �A) : Zn ! Z

n, which is just GI�A.
Under strong shift equivalence the �xed point set of A is unchanged. For the

expansion move one shows that it is equivalent to taking a direct sum with a
trivial group and so does not e�ect the isomorphism class. 2

We can now state the classi�cation theorem:

Theorem 5.1.12 (Franks [55]) Suppose that A and B are nonnegative irre-
ducible integer matrices, neither of which is in the trivial ow equivalence class.
The matrices A and B are ow equivalent if and only if

det(In �A) = det(Im �B)

and
Z
n

(In �A)Zn
�=

Z
m

(Im �B)Zm
;

where n and m are the sizes of A and B respectively, In and Im are identity
matrices, and �= denotes group isomorphism.

Remark 5.1.13 Theorem 5.1.12 does not hold if the trivial ow equivalence
class is not excluded.

Theorem 5.1.12 does not have a very good resolution for distinguishing tem-
plates. Consider the Lorenz and Horseshoe templates (L(0; 0) and H from x2.3).
These each have the matrix �

1 1
1 1

�

as a transition matrix, yet surely they are not equivalent, sinceH is not orientable
while L(0; 0) is: no �nite sequence of template moves transforms an orientable
template into a nonorientable template.

5.1.1 Finitely generated Abelian groups

It is worth noting that although strong shift equivalence is not generally com-
putable, the invariants of suspensions of subshifts of �nite type are readily com-
puted. To see this we digress briey into the theory of Abelian groups. Any
square integer matrix A yields an Abelian group

GA = Z
n=AZn;
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where n is the size of A. However, di�erent matrices can give rise to isomorphic
groups. If matrix B can be obtained form matrix A by a �nite sequence of
operations (to be listed shortly) then GA

�= GB . The matrices A and B do
not need to be the same size. Furthermore, each isomorphism class of matrices
has a canonical representative which can be computed from any other matrix
in its class by a �nite algorithm; thus, the converse holds as well. The allowed
operations are:

� switching two rows,

� multiplying a row by �1,

� adding an integer multiple of one row to another,

� the analogous column operations, and

� deleting a row and column whose only nonzero entries are a shared 1 on
the diagonal (or the reverse of this move).

The canonical form is a diagonal matrix with diagonal entries d1; : : : ; dk with
dijdi+1 for i = 1; : : : ; k � 1 and di 6= 1 for i = 1; : : : ; k. It then follows that

GA
�= Zd1 � � � � �Zdk ;

where Z0 = Z.

These facts are collectively know as the Fundamental Theorem of Finitely
Generated Abelian Groups. We do not present the formal algorithm for produc-
ing the canonical form, but the reader should be able to get the hang of it by
working a few examples.

Finally, we note that the order of GA is given by j detAj if detA 6= 0 and is
in�nite if detA = 0. Thus, Theorem 5.1.12 could be restated using the group
GI�A and just the sign of det(I �A).

Exercise 5.1.14 Let A =

�
1 2
2 1

�
. Show that GA

�= Z3.

5.2 Orientation data and stronger invariants

Our strategy for developing more sensitive abstract template invariants is to
modify the transition matrix to include orientation information. Given a Markov
partition fx1; x2; : : : ; xNg of a template we assign an orientation to each partition
element. Then the �rst return map restricted to each partition element is either
orientation preserving or orientation reversing.

De�nition 5.2.1 A parity matrix for a template is constructed from a transition
matrix by multiplying aij by the variable t if the �rst return map is orientation
reversing from the i-th partition element to the j-th partition element.



150 chapter 5. invariants

Example 5.2.2 The matrix

�
1 1
1 1

�
is a parity matrix for the Lorenz tem-

plate, L(0; 0), or, indeed, for any L(m;n) with m;n even. In contrast, the parity

matrix for the horseshoe template H is

�
1 1
t t

�
.

In [170] the following theorem is proved:

Theorem 5.2.3 Let T1 and T2 be two abstract templates with parity matrices
A1(t) and A2(t), respectively. If T1 and T2 are related to each other by a �nite
sequence of template moves then

det(I �A1(t)) = det(I �A2(t)) mod t
2 = 1:

De�nition 5.2.4 Given a parity matrix A(t), the linear function det(I �A(t))
mod t2 = 1 is the full Parry-Sullivan invariant.

The full Parry-Sullivan invariants distinguish the Lorenz template (�1) from
the horseshoe template (�t).

The group GI�A(1) is invariant as before, and it is not hard to show that
GI�A(�1) is also invariant. It is quite tempting to conjecture that the full Parry-
Sullivan invariant, along with these two Abelian groups, would give a complete
set of invariants for abstract templates. But the template in Figure 5.3 gives a
counterexample. Its full Parry-Sullivan invariant is �1 and both GI�A(1) and
GI�A(�1) are trivial, as they are for the Lorenz template. Yet, this template is
not orientable and thus clearly inequivalent to the Lorenz template.

De�nition 5.2.5 The unit normal bundle of the orbit set of a template is the
ribbon set of the template. For an embedded template, this set is realized as the
bundle of local stable manifolds.

We can reformulate Theorem 5.2.3 in terms of ribbon sets. Let T1 and T2 be
templates with ribbon sets R1 and R2 respectively. Then if there is a homeo-
morphism between R1 and R2 taking ribbons to ribbons (in particular annuli go
to annuli, M�obius bands go to to M�obius bands and in�nite strips go to in�nite
strips) and preserving the ow direction, then det(I � A1(t)) = det(I � A2(t))
mod t2 = 1 and GI�A1(�1) �= GI�A2(�1), where A1(t) and A2(t) are parity ma-
trices for T1 and T2 respectively. Furthermore, the de�nition of a ribbon set can
be extended to basic sets of ows on higher dimensional manifolds and the ana-
logue of these results remain valid [170]. It also follows from [170] that templates
with homeomorphic ribbon sets (in the manner just described) can be related,
up to embedding, by a �nite sequence of template moves.

De�nition 5.2.6 Two twist matrices are ow equivalent if they are associated
with equivalent ribbon sets. The generators of ow equivalence for parity ma-
trices are the analogs of

s� and
e� for parity matrices, and a new move, the twist
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Figure 5.3: A nonorientable template whose full Parry-Sullivan invariant is the
same as that of the (orientable) Lorenz template.

move: A(t)
t� B(t) if

B(t) =

2
6664

a11 ta12 � � � ta1n
ta21 a22 � � � a2n
...

...
...

tan1 a2n � � � ann

3
7775 ;

where A(t) = [aij ].

In applying
t�, we multiply the �rst row and column of A(t) by t and take t2 = 1.

On the level of templates, the twist move corresponds to rotating the bands that
pass through the �rst Markov partition element by a half twist. Thus, among
these bands, those which formerly had an odd number of half-twists now have
an even number and vice versa. Since this can be realized by isotopy there is no
need to de�ne a new corresponding template move.

Example 5.2.7 Let A(t) =

2
4 0 0 1

1 1 0
t t t

3
5, and B(t) =

2
4 0 1 t

1 0 0
0 1 t

3
5 :We claim

A(t) and B(t) are ow equivalent. Set R =

�
1 1 0
0 0 1

�
; and S =

2
4 0 1

1 0
t t

3
5 :

Now A(t) = SR and RS =

�
1 1
t t

�
: Applying the twist move followed by an

expansion yields B(t).
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Exercise 5.2.8 Construct a sequence of templates and template moves that
realize Exmaple 5.2.7.

Remark 5.2.9 The orbit splitting procedure used in constructing templates for
high dimensional basic sets alters the intersection of an orbit with elements of
a Markov partition. Thus, the Parry-Sullivan invariants would su�er changes.
However, there is in the theory of Markov partitions a mechanism that corrects
for multiply-counted orbits that occur if the partition elements overlap. This
involves constructing a \correction matrix" which is just a transition matix for
the overlap set. It is typically a permutation matrix. For ows, a similar matrix
could be introduced to correct for the orbits changed by orbit splitting. It
seems likely that such a device could be used to construct invariants under orbit
splitting, but this has not yet been carried out.

Remark 5.2.10 The full Parry-Sullivan invariant is an invariant of one-dimensional
basic sets in manifolds of any dimension.

5.2.1 Additional Examples

Example 5.2.11 Figure 5.4 shows two templates each of which has full Parry-
Sullivan invariant �t. The one on the left has two closed orbits in its boundary
while the one on the right has just one such loop; hence, they are distinct.
Figure 5.5 shows that the rightmost template is equivalent to the horseshoe
template (recall that we are disregarding the embedding).

Figure 5.4: Two templates with invariant �t.

Example 5.2.12 Consider a template with n strips coming down from a single
branch line, each looping back to the branch line and stretching completely
across it (while this is not technically a template it is easily turned into one by
n � 2 small pushes near the branch line: cf. the slide move). Suppose that k
of the strips are untwisted (orientation preserving) and l = n � k are twisted
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split

isotopy

homeomorphism

Figure 5.5: A template homeomorphic to the horseshoe template after a split
move.

(orientation reversing). Then the full Parry-Sullivan invariant is 1� k � lt, and
so templates with di�ering k are distinguished.

Exercise 5.2.13 Show that the Bowen-Franks groups of Theorem 5.1.11 do not
further re�ne the distinctions between the templates in Example 5.2.12

Example 5.2.14 Figure 5.6 shows two templates with three strips, only one of
which is twisted in each. They are distinguished by the fact that the number
of closed orbits in their respective boundaries di�er. In Figure 5.7 we show
two templates with �ve strips, only one of which is twisted in each. A study
of the boundary loops, including those with cusps, fails to distinguish them.
We conjecture however, that they are distinct and speculate that some type of
\non-abelian" invariant is needed to distinguish them.
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Figure 5.6: Two templates with three strips (identify top and bottom).

Figure 5.7: Two templates with �ve strips (identify top and bottom).

5.3 Zeta functions and ows

We now turn to invariants that are sensitive to the embedding of the template.
At this stage, knot theory reenters the picture. The idea is again to modify the
transition matrix, but this time to produce a twist matrix. We shall then use a
zeta function to count orbits according to the amount of twist in their unit normal
bundles. That is, we regard twist as a canonical (though nondynamical) period
for a closed orbit in a ow. The weakness of this approach is that invariance
holds only over positive templates.

5.3.1 Review of Zeta Functions

For general references on zeta functions see [53, Chapter 5] or [162, Chapter 10].

De�nition 5.3.1 The zeta function of a map f : M �! M is the exponential
of a formal power series in t,

�f (t) = exp

 1X
m=1

1

m
Nmt

m

!
;

where Nm is the cardinality of the �xed point set of fm, the m-th iterate of f .
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If f has a hyperbolic chain-recurrent set then the Nm are all �nite and �f (t)
is a rational function; hence, a �nite set of numbers determine all the Nm. In
particular, if Ol denotes the number of periodic orbits of length l then

Nm =
X
ljm

lOl:

We can recover Ol by the M�obius inversion formula [165, page 765]:

Ol =
1

l

X
mjl

�(m)Nl=m;

where � is the function de�ned by

�(m) =

8<
:

1 if m = 1;
0 if 9 a prime p with p2jm;

(�1)r if m = p1; : : : ; pr, for r distinct primes.

When a map f has a zero-dimensional hyperbolic chain-recurrent set, as
is the case for subshifts of �nite type, then there exists a square matrix A of
nonnegative integers such that Nm = tr (Am). Then �f (t) = 1= det(I � tA).
The matrix A is of course the transition matrix for a Markov partition.

The di�culty in applying zeta function theory to topological ows is that
there is no clear notion of the period of a periodic orbit. Temporal lengths, which
are not generally integral, change under reparametrization. On a template, we
can use the �rst return map of a Markov partition to give a (symbolic) period
to closed orbits. The zeta function is invariant under the three template moves.
However, it is not clear that such an approach would give useful information
about the original ow. Instead we use the twist in the local stable manifolds of
closed orbits as a canonical period.

Remark 5.3.2 Heuristically, one may view the Parry-Sullivan invariants as the
evaluation of a zeta function at �1. However, zeta functions typically fail to con-
verge at these values, and the zeta function is not invariant under the expansion
move.

5.3.2 Positive Ribbons

A closed ribbon, or ribbon for short, is an embedded annulus or M�obius band in
S3. In this section we de�ne three notions of twist for ribbons. These are, the
usual twist �u [98, xV], the modi�ed twist �m, and the computed twist �c.

Like knots and templates, ribbons can be braided. A ribbon which has a
braid presentation such that each crossing of one strand over another is positive
and each twist in each strand is positive, will be called a positive ribbon. The
core and boundary of a positive ribbon are positive braids.

We will use the following notation. If R is a ribbon and b(R) is a braid
presentation of R, let c be the sum of the crossing numbers of the core of R,
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using +1 for positive crossings and �1 for negative crossings, as per Figure 1.2.
Let t be the sum of the half twists in the strands of b(R) and let n be the number
of strands of the core.

De�nition 5.3.3 Let �u = c+ t=2, �m = n� 1 + t=2 and �c = 2n+ t:

Lemma 5.3.4 �u is an isotopy invariant of ribbons over all braid presentations.
�m and �c are isotopy invariants of positive ribbons over positive braid presen-
tations.

Proof: For an embedded annulus the linking number of the two boundary
components is c + t=2. The same formula gives one half the linking number of
an embedded M�obius band's boundary with its core. In both cases we �nd that
�u is an invariant.

The invariance of �m for positive ribbons follows from checking that

�m = �u � 2g;

where g = 1
2
(c � n + 1) is the genus of the core of R. Here we have appealed

Theorem 1.1.18 for the formula for g. Finally we see that �c = 2(�m + 1): 2

For the trefoil orbit in Figure 5.8 the reader can check that g = 1 and that
its unit normal bundle has �u = 6, �m = 4 and �c = 10.

Figure 5.8: Lorenz template with trefoil orbit.

Visually, the conversion of a positive full twist to a loop or writhe decreases
t by 2 but creates an extra strand. Since doing this to a negative full twist
would increase t by 2 while creating an extra strand, it is easy to show that the
invariance of �m and �c fail for ribbons with mixed crossings. We also note that
�u = �m is equivalent to g = 0, which in turn is true if and only if the core of
the ribbon is unknotted.

Lemma 5.3.5 For positive templates the number of closed orbits with a given
computed twist is �nite.

Proof: Given a positive template we put it into a positive braid form and
construct a Markov partition with K partition elements. Given �c choose n so
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that �c < 2n. Because the template is braided, a closed orbit that meets any
one partition element n times must have wrapped around the braid axis at least
n times. Since there are no negative half twists, such an orbit's computed twist
is bigger than or equal to 2n. If w � Kn, then any closed orbit with symbolic
period w must have traveled around the template's braid axis at least n times.
Thus, any closed orbit with computed twist �c has word length less than Kn.
There can only be �nitely many such orbits. 2

The computations in the proof of Lemma 5.3.4 show that Lemma 5.3.5 holds
for �m and �u as well as �c. This is clear for �m. For �u, use the fact g � 0
implies �u � �m.

5.3.3 Counting Twisted Ribbons

De�nition 5.3.6 For a given positive template let Tq0 be the number of closed
orbits with computed twist q0. Let Tq =

P
q0jq q

0Tq0 . De�ne the zeta function of
the template to be the exponential of a formal power series:

�(t) = exp

 1X
q=2

Tq
tq

q

!
:

Theorem 5.3.7 The zeta function � is an invariant of ambient isotopy of the
ribbon set for positive templates. It terms of positive templates � is invariant
under isotopy and the two templates moves shown in Figure 5.1.

Proof: This follows directly from Lemma 5.3.4. 2

We now de�ne a twist matrix, A(t), whose entries are nonnegative powers of
t and 0's, by considering the contribution to �c as an orbit goes from one element
of a Markov partition to other. Let Aij = 0 if there is no branch going from
the i-th to the j-th partition element. Let Aij = tqij if there is such a branch,
where qij is the amount of computed twist an orbit picks up as it travels from
the i-th to the j-th partition element. It is easy to see that one can, if necessary,
isotope the template so that qij is always integral. This might be necessary if
some of the partition elements lie outside of the branch lines. Also note that one
can always choose the partition so that at most one branch goes from the i-th
element to the j-th element for each i and j. However, if one wishes to be more
general, one can use polynomials in A(t) instead of just powers of t.

For example, the template and partition in Figure 5.9 give

A(t) =

2
66664

0 0 0 t t

0 0 0 1 1
0 t2 t2 0 0
t2 t2 t2 0 0
t3 t3 t3 0 0

3
77775 :
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x1 x2 x3

x5x4

Figure 5.9: A template with a Markov partition indicated by thick lines.

Theorem 5.3.8 For any template and any allowed choice of A(t) we have
�(t) = 1= det(I �A(t)). Thus, the zeta function is rational.

The proof of Theorem 5.3.8 is a standard counting argument and can be
found in [171]. We present an example to call attention to the major ideas.

Recall the horseshoe template H from Figure 2.9. Using the standard two-
element Markov partition fx1; x2g, we have

A(t) =

�
t2 t2

t3 t3

�
;

and so,
1= det(I �A(t)) = 1=(1� t2 � t3):

We apply a standard matrix identity (see Lemma 5.2 of [53] or Proposition
10.7 of [162]) to get

1

det(I �A(t)) = exp

 1X
n=1

tr A(t)n

n

!
: (5.1)
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�m 0 1
2

1 3
2

2 5
2

3 7
2

4 9
2

5 11
2

L 2 0 1 0 2 0 3 0 6 0 9 0

H 1 1 0 1 0 1 1 1 1 1 1 2

A 3 0 2 0 5 0 10 0 24 0 50 0

Table 5.1: Number of orbits listed by �m for di�erent templates.

Let us analyze the �rst three terms of

1X
n=1

tr A(t)n

n
=
t2 + t3

1
+
t4 + 2t5 + t6

2
+
t6 + 3t7 + 3t8 + t9

3
+ � � �

There are �ve closed orbits which pass through the Markov set three or fewer
times: x1, x2, x1x2, x

2
1x2, and x1x

2
2. All are unknotted, so �m = �u. The t

2 and
the t3 of the �rst term of the sum correspond to the orbits x1 and x2 respectively.
In the second term, x1 and x2 are counted again, by t

4 and t6 respectively, since
they have been traversed twice. The 2t5 corresponds to x1x2, where the 2 is the
product of number of orbits that pass through the Markov set twice (just 1 in
this case) with 2, the number of passes.

The reader should check that 3t7 corresponds to x21x2 and 3t8 to x1x
2
2. The

t6 and the t9 again count x1 and x2 respectively, this time making three trips
on each. It is worth noting that tr (A(1))n is the number of intersection points
of the Markov set with the link of closed orbits which meet the Markov set n0

times, where n0 divides n.
As a �nal example, Table 5.1 displays the number of closed orbits having

speci�ed (low) amounts of twist for three di�erent positive templates: the Lorenz
template, L, the horseshoe template H, and a template denoted A, shown in
Figure 5.10. The template A was �rst studied in [169], where it was shown to
contain only prime knots.

Exercise 5.3.9 Write a computer program to generate table entries similar to
Table 5.1 where the user enters the twist matrix.

Remark 5.3.10 Using zeta functions to count twists is a strategy which cannot
be adapted to all templates. Recall the templates U and V from Chapter 3; since
there exist isotopic template renormalizations on these templates, each contains
in�nitely many distinct copies of a knot with a given twist.

5.4 A zeta function for Lorenz attractors

Branched 2-manifolds with semiows were �rst introduced to study the strange
attractors believed to be associated with the Lorenz equation (Equation (2.1))
[193], [194]. Since the hyperbolicity of the Lorenz equations in the parameter
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Figure 5.10: The template A.

range of interest was and still is unknown, geometrically de�ned ows were used
as a model. The attractors of the model ows could then be studied rigorously
via templates. See [166, Appendix G] for a nice overview.

However, these \early" templates di�er in two respects from the Lorenz tem-
plate L(0; 0) de�ned in Chapter 2, and indeed, from all of the templates discussed
so far. First, orbits in the boundary can enter the interior of the template |
that is, the boundary ow is not invariant. In particular, the closed orbits x11
and x12 are not realized. Secondly, the template includes a saddle point, O.
This causes the invariant set of the template to be two dimensional. Figure 5.11
shows this object, which we shall call a sublorenz template can be used to model
a geometric Lorenz attractor. Although this is not a subtemplate of the Lorenz
template L(0; 0), all of the closed orbits on it are ambient isotopic to knots in
the Lorenz template. As before, we may use words in x1 and x2 to describe or-
bits; however, since we will work only with templates having two elements in the
Markov partition, we will relabel x1; x2 as x and y respectively for the remainder
of this section. Note in addition that the line we use for a cross section of the
semiow extends beyond the branch set. We shall call it the extended branch
line.

Consider the saddle point within the sublorenz template. On this template
(and in the full three-dimensional ow which generated it), the saddle point and
the attractor are inseparable but distinct invariant sets. Thus, the Lorenz at-
tractor is not closed: cf. Theorem 1.2.13. Of special interest are the trajectories
of the left and right branches of W u(0). Denote these l and r respectively. If
they each return to 0, thus forming a double saddle connection, we can de�ne a
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Figure 5.11: A sublorenz template.

�nite Markov partition for the semiow: see Figure 5.12. This naturally leads to
a corresponding transition matrix A(x; y) which measures not only which parti-
tion element sequences are admissible, but also along which strip (x denoting left
and y denoting right) the transitions occur (see Example 5.4.4 below). Although
the double saddle connection case is not a generic case, it is the situation we
consider.

Figure 5.12: A double saddle connection.

Two tools allow us to compactly encode information on the transitions in a
sublorenz template.

De�nition 5.4.1 The kneading sequence k of a sublorenz template is a pair of
sequences (kl;kr) de�ned as follows: kl is a sequence of x's and y's determined
by the order in which l meets the extended branch line. If l returns to the saddle
point then a terminal 0 is appended to kl. The sequence kr is de�ned similarly.

De�nition 5.4.2 Let S denote a sublorenz template with �nite kneading se-
quence and transition matirx A(x; y). Then the pre-zeta function of S is de�ned
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by the formal power series

�(x; y) =

1X
i=n

tr (An)

n
: (5.2)

Note that the multiplication of matrix elements is noncommutative. The
abelianization of � (what one obtains by declaring xy = yx) is denoted �a.

Suppose we are given two sublorenz templates, S and S 0. Let Ŝ and Ŝ 0
denote their respective inverse limits. When are Ŝ and Ŝ 0 homeomorphic? Here
the homeomorphism need not preserve the ow. On the level of the templates
we only need invariance under reordering of the partition elements. In [194], two
answers are given via the previous two de�nitions.

Theorem 5.4.3 (Williams [194]) Let L and L0 denote sublorenz templates with
�nite kneading sequences. Then the following statements are equivalent:

(a) L and L0 have homeomorphic inverse limits;

(b) The corresponding kneading sequences are equal, k = k0; i.e., kr = k0l and
kl = k0r; and

(c) The corresponding pre-zeta functions are equal, �(x; y) = �0(x; y), up to
exchanging x and y.

Example 5.4.4 Consider again the sublorenz template in Figure 5.12, denoted
S. The kneading sequence is (yy0; xx0). The Markov partition has the obvious
four elements, with incidence matrix given by

A(x; y) =

2
664

0 x 0 0
0 0 x x

y y 0 0
0 0 y 0

3
775 :

The overlap between the end points of the Markov partition elements does not
cause any over counting problems since the end points all ow towards the
saddle point 0 and so are not periodic. The abelianized pre-zeta function is then
determined by

exp(��a(x; y)) = det(I �A) = 1� xy � xy2 � x2y � x2y2:

That is, after abelianization the usual tools of zeta function theory can be ap-
plied. But it is not clear how to de�ne a non-abelian zeta function using a matrix
formula. One apparently has to grind out the trace of each power of the matrix
directly. For the matrix A(x; y) the �rst three terms of � are

0

1
+
xy + yx

2
+
x2y + xyx+ xy2 + yx2 + yxy + y2x

3
:
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As orbits xy and yx are the same, abelianization would not cause any loss of
invariant information in the second term. Likewise the elements of the third term
correctly capture the two period three orbits. This is because abelianization and
cyclic permutation are the same for these two terms. But, by the �fth term this
is no longer the case. The reader can check that there are no orbits with the word
x3y2 on S, but the word x2yxy is realized by a trefoil orbit. This distinction is
lost in �a but not by �.

In [196] Williams developed a new type of determinant that allows one to
write a matrix equation analogous to Equation (5.1). We give a heuristic outline
and an example.

Given a Markov partition with n elements consider the set of closed orbits
which do not visit any partition element more than once. These orbits all have
(symbolic) period less than or equal to n. For the template S they are xxy,
xxyy, xy, xyy. Each orbit corresponds to a cyclic permutation class in the free
group on two symbols. Following [196] we call these classes free knot symbols.
For S the free knot symbols are just (xxy), (xxyy), (xy), and (xyy), where the
parentheses denote the cyclic permutation class. We allow, for algebraic reasons,
the empty symbol (). Next, we de�ne a free link symbol as a formal product
of free knot symbols whose corresponding knots have no partition elements in
common, where the empty symbol () is taken to be the unit. We will consider
the ring of free link symbols given by allowing formal addition of symbols with
integer coe�cients. For the template S, each free link symbol is the product of
just one free knot symbol.

Given any square matrix A of x's, y's and 0's one can write down all the free
link symbols. To do this we �rst de�ne an index cycle. An index cycle is a �nite
sequence, (i1; : : : ; ik) of k distinct integers, 0 � k � n such that the product of
matrix elements

Ai1;i2Ai2;i3 � � �Aik;i1 6= 0:

Then

(Ai1;i2 ; Ai2;i3 ; : : : ; Aik;i1)

is a free knot symbol for the incidence matrix. The empty symbol is corresponds
to an empty index cycle: this is the multiplicative identity in the ring. We may
then concatenate free knot symbols so long as their corresponding index cycles
have no common elements. This yields the collection of free link symbols for A,
denoted fls(A).

We make the following observations. The free knot symbols (xy) and (yx)
are the same by cyclic permutation. But (xxyyx) is di�erent from (xyxyx). This
is as it should be to model knots on a template. However, the ring product is
commutative. Again this makes sense, since there is no preferred order on the
link of periodic orbits. Thus in the de�nition below (w)(v) and (v)(w) represent
the same element of the ring. Ring addition is also (of course) commutative.
The addition operation should thought of as \purely algebraic", in that unlike
the ring product it does not correspond to a geometric operation on knots.
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De�nition 5.4.5 The link-determinant is de�ned by

link-det (I �A) =
X
fls(A)

�iwi; (5.3)

where wi = (w1) � � � (wl) 2 fls(A) and �i = (�1)l. For the template L we
get 1�(xxy)�(xxyy)�(xy)�(xyy) as the link-det of the incidence matrix. The
(I � A) in the above de�nition may look a bit odd at �rst. It can be regarded
as a notational formality for consistency with the usual zeta function. However,
allowing 1's in the matrix can be used to give a de�nition of free link symbols so
as to have them all be of length n by \�lling" in with 1's. See [196] and [103].

Exercise 5.4.6 Let

A =

2
4 0 x 0

0 0 x

y y 0

3
5 :

Show that link-det (I �A) = 1� (xxy) � (xy).

Theorem 5.4.7 (Williams [196]) exp(��(x; y)) = link-det (I �A):

The intuitive idea is thatmost of the non-abelian \badness" is \hidden" inside
the free knot symbols and so one can use standard matrix theory machinery,
suitably modi�ed. In particular an analogue of the Cayley-Hamilton theorem
holds [103]. To see why we say most and not all of the non-abelian badness
is hidden, see Example D of [196]. We name �W (x; y) = exp(��(x; y)), the
Williams zeta function.

Theorem 5.4.7 can be interpreted to mean that a small set of words, corre-
sponding to links \�tted" to a Markov partition, determine all the other possible
periodic words of the given Lorenz attractor. Since the order of the words has
not been washed out by abelianization, we can reconstruct the knots. This is not
too surprising since the kneading sequence can be viewed as two special knots
that determine all the others. In fact, the words corresponding to the two knots
l [ O and r [ O, do appear in the link-det.

Finally, we note that under abelianization link-det (I�A) becomes det (I�A)
and that if P is a permutation matrix link-det (I �A) = link-det (I �PAP�1).
These facts are both have easy proofs and are done in [196].

Example 5.4.8 Figures 5.13 and 5.14 show two sublorenz templates, A and
B. It is not hard to set up the corresponding matrices A(x; y) and B(x; y) and
compute that

det(I �A) = x9y6 + x8y5 + x7y5 � x6y4 � x3y2 � x2y + 1 = det(I �B):

However, A and B are not equivalent as can be seen by checking their kneading
sequences. We leave it as an exercise to compute their Williams zeta functions.
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Figure 5.13: The sublorenz template A.

Figure 5.14: The sublorenz templates B.

5.5 Remarks on other invariants and open prob-

lems

Remark 5.5.1 A new class of template invariants has recently been announced
[100]. They are derived from em quantum groups, a class of objects which ap-
pears to be of fundamental importance in the study of knot and link invariants
[158]. These results are beyond the scope of the present text, but it is worth
noting that both the original Parry-Sullivan invariant and the full Parry-Sullivan
invariant have been realized as quantum invariants. However, the computations
involved in developing more sensitive invariants with regard to embeddings ap-
pear to be quite hard and still remain to be done.

Remark 5.5.2 There has been a great deal of work in symbolic dynamics of
subshifts of �nite type under various restrictions (e. g. irreducibilty) and in
generalized contexts (e. g. �nite identi�cations). See [32], for example. Our
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notion of ribbon equivalence �ts into this framework, although one would hope to
see the connection made more explicit. It is less clear if our boundary invariants
(the link of closed orbits in the boundary, etc.) can be derived from purely
symbolic data. If they can, then there is some cause for optimism toward the
problem of classifying ribbon sets of templates (in contrast with arbitrary ribbon
sets, which do not have boundary).

Remark 5.5.3 The twist-zeta function for positive templates de�ned in x5.3
was found before the full Parry-Sullivan invariant of x5.2. In fact, the latter
arose from an attempt to overcome the restriction of the twist-zeta function
to positive templates. It would be useful to develop an easier way to compute
template invariants which intermediate between these two; ideally it should be
well-de�ned for all templates but should contain more embedding information
than does the full Parry-Sullivan invariant.



Chapter 6: Concluding Remarks

In this monograph we have described tools, developed largely in the past �f-
teen years, which permit the explicit construction and description of those knot
and link types realised as periodic orbits in certain classes of three-dimensional
ows. The principal tool is the template, which allows the reduction of a three-
dimensional ow having a hyperbolic invariant set to a semiow on a branched
two-manifold. We also develop a \template calculus:" a symbolic language for
the characterization and manipulation of templates. These techniques are de-
scribed in Chapter 2. They build on \classical" ideas from knot theory and
dynamical systems theory, which we review in Chapter 1.

In Chapter 3 we have used these tools to derive general results on template
knots, and to prove the existence of a universal template which contains (in-
�nitely many) representatives of all tame knots and links. Here the tone is that
of inclusion. Chapter 4 takes a more exclusive viewpoint; we focus on restricted
classes of templates, especially that corresponding to the \simplest" suspension
of Smale's horseshoe map. We show that in such cases only limited classes of
knots can occur, and that uniqueness results may be used to distinguish branches
of periodic orbits in bifurcation studies. The chapter ends with a return to inclu-
siveness, as we show that the universal template of Chapter 3 occurs within the
ows of an open set of ODEs near a double Silnikov type homoclinic bifurcation
point.

Chapter 5 takes a di�erent direction in that we turn to the characterization of
templates per se instead of the knots and links they support. Template invariant
theory is less well-developed than the corresponding theory for knots, and this
chapter is necessarily more tentative in nature and limited in scope than the rest
of the book.

In the course of the text we have noted or hinted at a number of open ques-
tions. In the hope that they may stimulate future work, we collect and expand
on them here. We also give references to some relevant (and mostly recent)
literature of which we learned shortly before the book went to press.

Problems in template theory and applications

Problem 6.0.1 The best sort of result one could hope for in template theory
would be an easily-computed, discriminating template invariant. This appears
to be a very di�cult undertaking, as mentioned in Chapter 5. However, as the
number of new knot-and-link invariants seems to be growing daily, there is hope
that some of these recent invariants can be exported to template theory: e.g.,
the quantum template invariants mentioned in x5.5.

Problem 6.0.2 As an alternate approach to the previous problem, it would be
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very useful (and indeed, it seems quite feasible) to develop a rough classi�ca-
tion theorem for templates. The crudest such result would provide necessary
and su�cient conditions for determining when a template is universal. Natural
re�nements of this classi�cation would include a compact way to describe how
a template fails to be universal (e.g., the template is positive). Since we have
shown that every template is universal up to embedding, this would entail some
sort of description of how the strips are embedded (e.g., they are all linked in
too-complicated a manner, or perhaps each strip is knotted and forces satellite
knots, etc.). We recall Conjecture 3.2.24, which states that a template is uni-
versal if it has a su�ciently large unlink within it | failure to be universal may
be encoded in the size of the largest unlink. A related problem is to determine
whether or not a universal template (one which contains all knots) must be very
universal in the sense that it contains V as a subtemplate (and hence, all links,
in�nitely many copies of all links, etc.). However, this appears to be a rather
messy problem.

Problem 6.0.3 There are several lesser problems concerning universal tem-
plates. For example, how are the knot types distributed in the space of periodic
orbits? Are the unknots dense in this space? Answers to such questions would
give an idea of the probability of �nding a particular type of knot within the
periodic orbit set.

Problem 6.0.4 In applying template theory to studying �bred knots (recall
x2.3.4) it is unclear how much information is encoded in the template associated
to the �bration. In all the examples computed here (related to the �gure-eight
knot and the Whitehead link), the derived templates are universal. It is reason-
able to guess that every �bred link with pseudo-Anosov monodromy which is not
a positive braid has a universal template associated to its �bration. However,
if this is not true, then the templates would serve as a tool for distinguishing
certain �bred links. Or, perhaps, �ner information than the planetary link as a
whole could be derived from the template.

Problem 6.0.5 In applying template theory to templates derived from ows,
we have restricted ourselves to uniformly hyperbolic dynamical systems, for
which the Template Theorem applies. It would be of great interest to adapt
the proof to non-uniformly hyperbolic cases (covered by Pesin theory), which
are known to be crucial for describing the full dynamics of smooth maps of
H�enon type and their attractors [131, 140].

Problem 6.0.6 In a related vein, the material of Section 5.4 also suggests a new
direction. Indeed, while the study of templates for hyperbolic sets has matured
over the past �fteen years, there have been few application of templates to
attractors per se. This is perhaps mainly because it is very di�cult to prove that
non-trivial, indecomposable attractors exist for ows de�ned by speci�c ODEs,
while hyperbolic (sub-) sets are relatively easy to �nd. We note that Kennedy
in his Ph. D. dissertation [102] shows that the Lorenz-like templates (Section
2.3.1) are realized as models for attractors in certain geometrically de�ned ows,
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and there has been some interesting work showing that certain classes of ODEs
contain geometric Lorenz attractors: see [44], [156], and [152]. However, no
other type of template has been rigorously associated with the full attractor of
an ODE. The examples given in Section 2.3.3, and the proof of Section 4.4.2
that a universal template lies in the ow near a double Silnikov homoclinic
connection, all involve hyperbolic sets which may belong to an attracting set,
but which certainly do not comprise the whole attracting set.

A further complicating factor, mentioned briey in Section 5.4, is the issue
of invariant sets or attractors with in�nite (countable) Markov partitions, which
may require kneading theory for a full description, as does the (geometrical)
Lorenz attractor. Williams [194] gives a method for the construction of in�nite
Markov partitions for the sub-Lorenz templates of Chapter 5. J. Wagoner [185],
[186], has also studied in�nite Markov partitions, but not in the context of
templates. This area is also open.

Problem 6.0.7 The largely non-rigorous ideas of Section 2.3.5, in which tem-
plates are derived from embedded (experimental) time series, continue to attract
interest. Papers following up on [128] include [126, 121] and [108, 159, 109, 111,
110, 113, 112]. The reference [126] is notable in that it shows explicitly how
di�erent embeddings can give rise to templates carrying topologically distint
links of periodic orbits (although this is not surprising, in view of the fact that
all templates are universal, up to embedding (Theorem 3.3.5).) It would thus
seem important to derive embedding-invariant descriptions of templates, cf. the
Parry-Sullivan invariants of Chapter 5.

Problem 6.0.8 Perhaps the greatest shortcoming of the techniques detailed in
this book (except for portions of Chapter 5) is their inherent three-dimensionality.
Knotting and linking of periodic orbits is simply impossible in higher dimensions.
In terms of trying to derive topological information from time series data, [136]
and [127] are good �rst steps in deriving higher dimensional topological struc-
tures from time series.

Other avenues are also open. There is a well-de�ned notion of higher-
dimensional knot theory in which k-spheres are knotted and linked within (k+2)-
spheres. Several authors have suggested applying such perspectives to dynami-
cal problems [128, 130]; however, there is a glaring lack of dynamically relevant
spheres except for 1-spheres (periodic orbits). What can (and should) be ex-
plored is the presence of knotted k-tori in (k + 2)-dimensional ows. Such tori
may be nontrivially knotted, thought not in the way that one might expect, given
one's intuition in R3. Here is an example: consider a nontrivial knot K � R

3.
Then K � S1 � R

3 � S1 is a nontrivially knotted torus in a 4-manifold. It is
clear to see how such knotted tori would arise naturally in several contexts, in-
cluding periodically excitation of three dimensional ODEs possessing hyperbolic
periodic orbits.

In this context it remains to develop a good knot theory for embedded tori
(almost all of the work in higher-dimensional knot theory has been done with
spheres), and then to �nd key examples in which embedding information can
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be easily derived. It appears unlikely that a higher-dimensional template theory
is possible; however, considering the embedding data in Hamiltonian systems
might be a good place to start.



Appendix A: Morse-Smale / Smale

Flows

A.1 Morse-Smale ows

In Morse-Smale ows the basic sets are simply closed orbits and �xed points:
there is no \chaos" and hence little need for templates. Nevertheless, such
ows form an interesting and important class. Here we review basic facts about
Morse-Smale ows, culminating in the result of M. Wada [184] that charac-
terizes which links can be realized as the periodic orbit link of a nonsingular
Morse-Smale (NMS) ow on the 3-sphere. (Recall that a nonsingular ow is a
ow without �xed points.) Surprisingly, a subclass of these links is precisely
the set of realizable links in a special class of Hamiltonian systems [35] (see
Remark A.1.14).

We recall the de�nition of Morse-Smale ows from Chapter 1:

De�nition A.1.1 A ow �t on a manifold M is Morse-Smale if,

� The chain recurrent set is hyperbolic,

� The stable and unstable manifolds of basic sets meet transversely.

� Each basic set consists of a single closed orbit or �xed point.

For M a compact manifold, it follows that there are a �nite number of periodic
orbits and �xed points.

Among structurally stable ows, Morse-Smale ows have attracted special
interest. Morse-Smale ows are dense in the C1 topology of C1 ows on compact
2-manifolds (this follows from Pugh's closing lemma [147]). In the C1 case the
density result is known only for orientable compact 2-manifolds [142] and for
the projective plane, the Klein bottle or the torus with a cross cap [78]. For
other nonorientable 2-manifolds the question remains open. On any manifold,
Morse-Smale ows form a dense subset among the gradient ows, regardless of
the smoothness class. An excellent account of these results can be found in [139]
and the references there.

Example A.1.2 We give a construction for a NMS ow on S3 with two closed
orbits: one attractor and one repellor, which form a Hopf link as illustrated in
Figure 1.9(c). Consider the solid torus V1 = D2 � S1 as the subset of R2 (in
polar coordinates) crossed with S1 given by

V1 = f(r; �; �); 0 � r � 1; �; � 2 S1g:
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Place a ow on V1 given by the vector �eld

X = ( _r; _�; _�) = (�r; 0; f(r));

where f(r) is a smooth nonnegative bump function with support in a small
neighborhood of r = 0. Let V2 denote a second copy of V1 out�tted with the
\backwards" vector �eld �X . As such, we may match the vector �elds on the
boundaries of V1 and V2 and glue these solid tori together via � : @V1 ! @V2
given by (�; �) 7! (�; �).

There are several ways to show that gluing V1 and V2 together in this manner
yields S3, concluding the existence of the desired NMS ow: we review one such
procedure. Observe that gluing two disks together along their boundary in the
obvious way produces a 2-sphere. Likewise gluing two 3-balls together yields a
3-sphere. If we cut out a small neighborhood of a diameter in one of the 3-balls,
the remaining portion of that 3-ball is a topological solid torus. However, the
union of this neighborhood and the other 3-ball is also a solid torus. Thus, we
have realized S3 as a union of two solid tori (in this case, V1 and V2) glued
together along their boundaries in a manner which exchanges the meridian and
longitude as per �. The resulting NMS ow is pictured in Figure A.1.

Figure A.1: A NMS ow on S3 which has one attractor and one repellor arranged
in a Hopf link.

Not every manifold supports a nonsingular Morse-Smale ow, or even a non-
singular ow for that matter. A simple Euler characteristic criterion determines
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if a manifold supports a nonsingular ow, Morse-Smale or otherwise. This cri-
terion is a mild extension of classical results due to H. Hopf and Poincar�e [124]:

Lemma A.1.3 Let M be a compact manifold whose boundary, possibly empty,
has been partitioned into two collections of connected components, @�M and
@+M :

@M = @�M [ @+M;

; = @�M \ @+M:

Then there exists a nonsingular vector �eld on M, pointing inward on @�M
and outward on @+M , if and only if �(@�M) = �(M). 1

Asimov [12] has shown that every manifold of dimension n 6= 3 which satis�es
the Euler criterion above supports a nonsingular Morse-Smale ow. This is false
for 3-manifolds, but Morgan [132] has characterized which 3-manifolds support
nonsingular Morse-Smale ows. Morgan's criteria are rather technical and we
will not go into them here. See [132] or [35]. The basic idea behind these
results is that a manifold supports a nonsingular Morse-Smale ow if and only
if it admits a round handle decomposition. We give details only for the case of
3-manifolds.

A.1.1 Round handles

In dimension three, a round handle (RH) is a solid torus D2 �S1 together with
a speci�ed subset of its boundary called its attaching zone. We imagine that
each round handle comes with a NMS ow having the core f0g� S1 as the sole
closed orbit, as in Example A.1.2. The exit set of the ow will be the attaching
zone for the round handle (possibly empty, in the case of attracting orbits). We
will use round handles to build NMS ows by gluing them together so that the
attaching zones are joined to the in-owing regions of other round handles.

� 0-RH: The attaching zone is the empty set and the core is an attracting
orbit. We start building a NMS ow by laying down some 0-RHs.

� 1-RH (untwisted): The attaching zone consists of two disjoint annuli, each
going longitudinally around the torus once, and the core orbit is a saddle
orbit whose local stable and unstable manifolds are annuli (perhaps twisted
with a nonzero but even number of half twists).

� 1-RH (twisted): The attaching zone is an annulus that wraps twice longi-
tudinally about the torus, and the core orbit is a saddle whose local stable
and unstable manifolds are M�obius bands.

� 2-RH: The attaching zone is the entire boundary, and the core orbit is a
repellor.

1
Recall �(;) = 0. For review of the Euler characteristic, see [117].
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Remark A.1.4 This de�nition can easily be extended to de�ne round handles
in higher dimensions: see [12].

De�nition A.1.5 A RH decomposition of S3 is a sequence of manifolds:

; =M0 �M1 �M2 � � � � �Mk = S3

such that each Mj is obtained by attaching a RH to Mj�1 along its attaching
zone.

Lemma A.1.6 (Asimov [12] and Morgan [132]) For every RH decomposition
of S3 there is a NMS ow on S3 such that (1) the closed orbits of the ow
are equivalent to the cores of the round handles, together with their indices and
twistedness; and (2) the ow is inwardly transverse to @Mj for each j.

Conversely, for every NMS ow on S3 there is a RH decomposition such that
(1) and (2) above hold.

Sketch of Proof: It is clear from the remarks above that if we can �nd a
round handle decomposition, then we can build a corresponding NMS. One does
have to check that the stable and unstable manifolds intersect transversely, but
this can always be achieved by a small perturbation.

The other direction is harder and will require the use of the no-cycle property
of Morse-Smale ows. Since in a NMS ow, all the closed orbits are attractors,
repellors, or saddles, their tubular neighborhoods are round handles. We want
to use the action of the ow itself to do the attaching. But we need to order the
orbits sequentially to get a decomposition. In our case, we would like to enumer-
ate all the attracting orbits in arbitrary order, then the saddles, and �nally the
repellors, again in any order; however, the saddles cannot be attached in arbi-
trary fashion. Clearly, if the unstable manifold of one orbit ows into the stable
manifold of another, this latter orbit should appear �rst in the decomposition.
But should the unstable manifold of this orbit ow back into the stable manifold
of the former, a decomposition would not exist. It is the no-cycle property which
circumvents this problem.

Let c1; : : : ; cn be the closed orbits of a NMS ow. De�ne ci � cj if the
unstable manifold of cj meets the stable manifold of ci. The No-Cycle Theorem
[165] states that � is a partial ordering on the closed orbits. By choosing any
total ordering compatible with �, we may use the action of the ow to attach
tubular neighborhoods of the closed orbits and obtain a decomposition.

Suppose we have built up Mi�1, and want to attach the next round handle.
(M0 is easy as it is just a 0-RH.) Let Ni denote the neighborhood of ci and let
Ei denote the exit set of the ow. The forward image of Ei under the ow in-
tersects @Mi�1. We form a bigger round handle by joining Ni with

S
t�0 �t(Ei)

and deleting any intersection with Mi�1. Taking the closure of this yields a RH
for ci attached toMi�1. A small adjustment must be applied to the boundary of
Mi, which is tangent to the ow along the \edges" of

S
t�0 �t(E). In addition,

one must also adjust slightly to make sure things are smooth. 2



a.1. morse-smale flows 175

A.1.2 The 3-sphere

In this book, we have considered the knotting and linking properties of closed
orbits for ows on the 3-sphere. In [184], M. Wada characterized the class of links
that could be realized as the set of periodic orbits of a nonsingular Morse-Smale
ow on S3. Actually he does a little more | each component of a link of closed
orbits may be labeled with the index of the orbit: 0 (for attractors), 1 (saddles)
or 2 (repellors). Wada characterizes which indexed links can be realized.

The interested reader may �nd Wada's paper tersely written. In particular,
there are no illustrations, although the proof requires nontrivial visualization.2

A more recent paper [35] (see Remark A.1.14) is easier to follow, but leaves out
some details, referring to Wada's paper. Thus, the diligent reader might want
to have both papers on hand to understand the proof. Here we present only a
statement of the result and a brief outline of the proof. Before stating Wada's
theorem, we construct two further examples of NMS ows on S3. Each example
shows how to build a new ow from one or more existing ows.

Example A.1.7 Consider an attractor A of a NMS ow on S3. We may remove
a tubular neighborhood N of A and replace it with a solid torus supporting an
NMS ow which is inwardly transverse to the boudary, but which contains more
than a single closed orbit. Consider the return map on a meridional cross-section
ofN : this will appear as a disc with a sink at the center of the disc, the remainder
of which is foliated by invariant radial lines along which orbits tend towards the
sink.

In Figure A.2, we give three di�erent examples of new ows that can be
glued in to S3 nN , illustrated by means of the cross-sectional return maps. Note
that each has three closed orbits (or �xed points in the map), and that one
is a saddle (as should be via simple index theory). Upon suspension of these
maps, the two \side" orbits may cable about the core orbit an arbitrary number
of times. Finally, we may generate all sorts of variations on this example by
performing an n-fold branched covering of the disc, branched over the center
point, as illustrated in Figure A.3 | hence, more general cablings of orbits can
be produced. Of course, one may reverse the ow direction and create NMS ows
on solid tori with the attractors and repellors exchanged and the ow outward
on the boundary.

We now possess several tools and components for building new NMS ows on
S3 from old ones. We next construct a NMS ow on S3 with basic sets consisting
of a single saddle orbit and two Hopf links, each a repellor-attractor pair, put
together via a \split sum:"

De�nition A.1.8 (Split sum) Let L1 and L2 be links in two three-spheres S
3
1

and S32 respectively. Delete a small open 3-ball from each of the link comple-
ments, S3i � Li, i = 1; 2, and form the union of S31 � B1 and S

3
2 �B2 by gluing

them along their boundaries. We obtain a new 3-sphere (to see this take one of

2
A preprint of Wada's paper did include many helpful illustrations which did not survive

in the published version.
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Figure A.2: Return maps on a cross section of an attracting orbit. Triangles
refer to sinks, squares to sources, and crosses to saddles.

Figure A.3: Cablings more general than (2; n) may be created by modifying one
of the above examples via a branched covering.

the balls to be a neighborhood of \1") with a new link denoted L1 � L2 and
called the split sum of L1 and L2.

Taking the split sum of two links results in a separable link.

Example A.1.9 We will build up our ow in pieces and then glue the pieces
together to obtain a ow on S3. Let C denote a cylinder I � S1. We can put a
NMS ow on the thick cylinder C � I having a single closed orbit of index one,
i.e., a saddle: see Figure A.4. The exit set is @C � int (I). The ow enters
from int (C)�@I and is transverse along the exit and entrance sets. The saddle
orbit is the center circle of C cross the midpoint of I .

De�nition A.1.10 A simple closed curve embedded in a surface is inessential
if it bounds a disk in the surface. Otherwise, the curve is said to be essential.

Now we continue with Example A.1.9. Let Vi, i = 1; 2 be two 0-round
handles. Attach one component of @C � I to an inessential annulus on @V1, so
that the annulus' core bounds a disk in @V1, and attach the other component to
an inessential annulus on @V2. We can \round o� the corners" of this attaching
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Figure A.4: Thickened cylinder with a saddle orbit.

so as to obtain a smooth ow on the union with the ow entering transversely
along the entire boundary of the resulting manifold.

However, if we attach V1; C � I; and V2 naively as in Figure A.5 there would
be a 2-sphere transverse to the ow in the boundary. Any attempt to use this
to build a ow on S3 would force a singularity. Thus the attachment to V2 must
be done in a di�erent way. In Figure A.6, C � I \swallows" V2, and then turns
in to attach to it. Note that @C � f0g bounds a disk in V1 minus the attaching
annulus but not on V2 minus the attaching annulus.

Figure A.5: The union of two solid tori and a thick cylinder may have a sphere
and a double torus as boundary.

To recap so far, the manifold V1 [ (C � I) [ V2 has a NMS ow with three
closed orbits: two attractors and a saddle. The ow is transverse inward along
the entire boundary. What is that boundary? It is the disjoint union of two tori.
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The outer one, referring again to Figure A.6, contains \1". We glue in two new
solid tori V3 and V4, each endowed with NMS ows, exiting transversely along
their boundaries, and each containing a single closed repelling orbit at its core.
In the language of round handles, we have built a ow with two 0-round handles,
two 2-round handles, and a single 1-round handle.

This last gluing produces the desired NMS ow on S3. If we denote a pair of
distinct Hopf links by hi, i = 1; 2 and the unknotted saddle by u, then the chain
recurrent set of our new NMS ow would be h1 � h2 � u. Wada generalizes this
construction for links other than Hopf links: see W1 in de�nition A.1.11 below.

Figure A.6: The same handles attached di�erently contain only tori as boundary
components.

A.1.3 Wada's Theorem

De�nition A.1.11 Let W be the collection of indexed links determined by the
following seven axioms:

W0: The Hopf link indexed by 0 and 2 in is W .

W1: If L1; L2 2 W then L1 �L2 �u 2 W , where u (here and below) is an unknot
in S3 indexed by 1.

W2: If L1; L2 2 W and K2 is a component of L2 indexed by 0 or 2, then
L1 � (L2 �K2) � u 2 W .

W3: If L1; L2 2 W and K1;K2 are components of L1; L2 with indices 0 and 2
(resp.), then (L1 �K1) � (L2 �K2) � u 2 W .
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W4: If L1; L2 2 W and K1;K2 are components of L1; L2 (resp.) each with
index 0 or 2, then

((L1;K1)#(L2;K2)) [m 2 W ;

where K1#K2 shares the index of either K1 or K2 and m is a meridian of
K1#K2 indexed by 1.

W5: If L 2 W and K is a component of L indexed by i = 0 or 2, then L0 2 W ,
where L0 is obtained from L replacing a tubular neighborhood of K with
a solid torus with three closed orbits, K1, K2, and K3. K1 is the core and
so has the same knot type as K. K2 and K3 are parallel (p; q) cables of
K1. The index of K2 is 1. The indices of K1 and K3 may be either 0 or 2,
but at least one of them must be equal to the index of K.

W6: If L 2 W and K is a component of L indexed by i = 0 or 2, then L0 2 W ,
where L0 is obtained from L by changing the index of K to 1 and placing
a (2; q)-cable of K in a tubular neighborhood of K, indexed by i.

W7: W is minimal. That is,W �W 0 for any collection,W 0, satisfying W0-W6.

Remark A.1.12 The last condition, W7, means that W is generated from the
indexed Hopf link in S3 by applying operations W1-W6.

Theorem A.1.13 (Wada [184]) Let F be the set of indexed links which can be
realized as the collection of periodic orbits of a NMS on S3, respecting index.
Then W = F .

Outline of proof: The argument forW � F is straightforward though tedious.
We must show that F obeys axiomsW0 throughW6. Example A.1.2 establishes
W0. Example A.1.7 shows axiomW6 can be realized and Example A.1.9 can be
generalized to show F obeys W1. The remaining axioms can be similarly shown
to hold by explicit constructions.3

The proof of F � W uses an induction strategy. Let Fr be the subcollection
of F whose elements have at most r components of index 1. For r = 0, F0
contains just the Hopf link with indices 0 and 2. Thus, F0 � W . Now suppose
that for some r � 1, Fr�1 � W . Let L 2 Fr. The corresponding ow has a
round handle decomposition. By careful surgery, one removes a 1-RH from this
ow and shows that two new ows on S3 can be constructed from the remaining
round handles. These ows have at least one fewer index 1 orbit and so are in
W . But the surgery is performed so that the process can be reversed via one of
the moves W1; : : : ;W6. Hence, Fr is in W for all r. 2

3
The only construction which is very di�cult is that of W4 | forming the connected sum.

The summary article [35] contains a helpful diagram.
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A.1.4 Extensions and applications

Remark A.1.14 Fomenko [49] has developed a general program for studying
integrable Hamiltonian ows on three-manifolds which has fundamental connec-
tions to nonsingular Morse-Smale ows. Consider a symplectic four-manifold
M with Hamiltonian H , a nondegenerate constant-energy three-manifold Q =
H�1(c) � M , and an additional integral F de�ned on a neighborhood of Q
whose critical points in Q form nondegenerate submanifolds. Then, we say the
Hamiltonian system de�ned by H is Bott-integrable on Q. This is a more gen-
eral notion than that of (complete) integrability, in which every constant-energy
submanifold is integrable.

For a Bott-integrable system on Q, there is a �nite collection of critical sub-
manifolds of F on Q which are periodic orbits: these form a link LF in Q. The
only other critical submanifolds present are singular tori. By the Liouville Theo-
rem [6], the complement of the critical submanifolds of F in Q is foliated by tori.
Any component of LF is indexed with the index inherited from F . Knots of index
zero or two (local minima/maxima of F ) possess tubular neighborhoods foliated
by tori except at the core. Knots of index one lie on one or two \bifurcation"
tori, which correspond to inection points for F .

Fomenko and Nguyen [50], using topological and dynamical methods, were
the �rst to show that each periodic orbit of the Hamiltonian ow on Q with
index zero or two must be a generalized iterated torus knot: that is, it is formed
from the unknot by the operations of cabling and connected sum. Cassasays,
Nunes, and Mart�inez Alfaro [35] revisit this work and point out that the Bott-
integrable energy manifold Q must also support a NMS ow with cores of the
RH decomposition related to the link LF in a natural way. Thus, they conclude
that the class of indexed links realizable as the set of stable periodic orbits
for some H and F is generated by the axioms W0, W4, W5, W6, and W7 of
De�nition A.1.11.

From these two works, it follows that any periodic orbit in the integrable
Hamiltonian ow on Q must be a generalized iterated torus knot. See [35, 50]
for de�nitions and further details.

Remark A.1.15 In [157], Saito extends Wada's theorem. Given any indexed
link L and any 3-manifold M we cannot in general expect there to be a NMS
ow on M , let alone one with nonwandering set L. However, Saito develops a
canonical procedure for producing a new indexed link L0, derived from any L,
and a new manifold M 0 derived from M , such that there is a NMS ow on M 0

with nonwandering set L0. There are some minor restrictions on the initial link
L and M must be orientable.

Remark A.1.16 Generalized iterated torus knots manifest themselves in other
settings as well. Let � be a smooth plane �eld on S3: that is, in the tangent
space at each point there is a plane. Consider the class of vector �elds which
lie entirely within �. Such ows have characteristics of both two- and three-
dimensional dynamics and arise in the study of contact geometry.
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In [45], it is shown that [generic] singularities of a plane-�eld ow arise not in
isolated points, but in embedded circles. Hence, the singularities of such a ow
gives a link. Consider the class of ows with the simplest dynamics: gradient-
like ows, for which the only recurrence is �xed points. Then the only types of
links which may arise are the links described in Wada's Theorem.

A.2 Smale ows, abstract

In this section we review the work of Franks and others on Smale ows, especially
nonsingular Smale ows on S3. These results rely on the homology theory of
�ltrations associated to the ow. As this is outside the scope of this work, we
will merely state results and outline applications. Thus, no use of homology will
be made here. The interested reader should consult [53] as well as the references
given there.

The theory outlined culminates in an abstract classi�cation of Smale ows
on S3 using a device called the Lyapunov graph. By abstract, we mean that the
embedding types of the basic sets are not determined, only which combinations
of basic sets can be realized. The next section of this appendix addresses the
question of how they may and may not �t together with respect to embedding.

Smale ows satisfy the same hyperbolicity and transversality conditions as
Morse-Smale ows, but the basic sets may have in�nitely many periodic orbits,
while still being one-dimensional (or zero-dimensional if we allow for singulari-
ties). Recall from x1.2 the de�nition of a Smale ow:

De�nition A.2.1 A ow �t on a manifold M is called a Smale ow if

� the chain recurrent set R of �t has a hyperbolic structure,

� the basic sets of R are zero- or one-dimensional, and

� the stable manifold of any orbit in R has transversal intersection with the
unstable manifold of any other orbit of R.

Smale ows on compact manifolds are structurely stable under C1 perturba-
tions but are not dense in the space of C1 ows. It is easy to see that for dim
M = 3, each attracting and repelling basic set is either a closed orbit or �xed
point. The admissible saddle sets, however, include suspensions of irreducible
subshifts of �nite type and can be nontrivial, i.e. they can have in�nitely many
closed orbits. Thus, while there are no strange attractors or repellors, compli-
cated saddle sets may exist, which can be modeled by templates. Indeed, as we
shall see, a suspension of the horseshoe, together with an attractor-repellor pair
of periodic orbits, provides an important example of a nonsingular Smale ow.

Given a suspended subshift of �nite type we can construct a Markov partition
and a corresponding transition matrix A. We can encode additional information
about the embedding of a basic set by modifying the transition matrix:
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De�nition A.2.2 Given a Markov partition for a cross section of a basic set
with �rst return map �, assign an orientation to each partition element. If the
partition is �ne enough the function

O(x) =

�
+1 if � is orientation preserving at x;
�1 if � is orientation reversing at x;

is constant on each partition element. The structure matrix S is then de�ned
by Sij = O(x)Aij , where x is any point in the i-th partition element. (This is
slightly di�erent then the structure matrix de�ned in x5.2.)

Example A.2.3 For a suspension of the full shift on two symbols modeled in

a ow by the Lorenz template,

�
1 1
1 1

�
is the structure matrix. However, if

the suspension of the full two-shift is modeled by the horseshoe template, then�
1 1
�1 �1

�
is the corresponding structure matrix.

Later, we will de�ne the linking matrix of a saddle set in a Smale ow that
encodes how the orbits in the saddle set link the attracting and repelling orbits
in the ow.

The suspension of any irreducible subshift of �nite type can be realized as
a basic set in a Smale ow on any manifold of dimension three [148] or greater
[191]. The technique of [148] typically introduces many singularities. Franks
[54] has observed that the realization result in [148] holds true for any structure
matrix.

Theorem A.2.4 (Franks [54]) Suppose S is an irreducible integer matrix. Then
there exists a nonsingular Smale ow �t on some 3-manifold with basic set �
whose structure matrix is S. It is possible to choose �t so that each basic set of
�t, except for �, consists of a single closed orbit.

Theorem A.2.5 (Franks [54]) Suppose �t is a nonsingular Smale ow on S3

with a basic set having an n�n structure matrix S. Then if det(I �S) 6= 0, the
group Zn=(I � S)Zn must be cyclic.

Example A.2.6 The matrix S =

�
1 2
2 1

�
cannot be realized as the structure

matrix of a nonsingular Smale ow on S3, since the quotient group Z2=(I�S)Z2
has presentation hx; y : 2x = 2y = 0i, which is isomorphic to Z2 � Z2.

Suppose there is a single attracting closed orbit a, and a single repelling
closed orbit r, with all other basic sets saddles. Then we may compute the
absolute value of the linking number of a and r as follows. Let �1; : : :�n
denote the saddle sets and let S1 : : : Sn denote the respective structure matrices.
It is shown in [51] that

j`k (a; r) j =
nY
i=1

j det(I � Si)j;
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where the product is taken to be one if n = 0. We remark that j det(I � Si)j is
the order of the group Zm=(I � Si)Zm where m is the size of Si.

Example A.2.7 Given a ow as above with a single saddle set having structure

matrix

�
�1 �1
�1 �1

�
; a and r have linking number three. Figure A.7 depicts

a realization of this example. The �gure shows an isolating neighborhood for
each of the three basic sets. For a and r, these are the solid tori Va and Vr
respectively. Call the saddle set � and its isolating neighborhood N . Now N is
isotopic to the unit normal bundle of a template T . The template T is shown
in Figure A.8, where we see how to isotope it to look more like the templates
presented in earlier chapters. The exit set of N is isotopic to the unit normal
bundle over @T and is attached to @Va. We can now see how to attach @Vr to
@(Va [N) and form S3.

Figure A.7: A Smale ow with `k (a; r) = 3.

If we know how the saddle sets \link" a collection L of attracting and repelling
closed orbits we can say more: we can compute a polynomial invariant of the
link L. This invariant is none other than the Alexander polynomial, a standard
invariant of classical knot theory [154, 33].

The manner in which a saddle set \links" a collection of closed orbits is
described by modifying the structure matrix S to form a linking matrix K.
Consider a cross section of the saddle set that is homeomorphic to a subshift of
�nite type � : �A ! �A, by a homeomorphism h. We de�ne Cantor sets fCigni=1
by Ci = h(fa 2 �Aja0 = xig). As in Lemma 2.2.5, we can extend the fCigni=1
to two-dimensional disks fDigni=1 which are transverse to the ambient ow such
that (a) Ci = Di \ S, (b) @Di \R = ;, and (c) Di \ L = ;, for i = 1; :::; n.

Next we pick a base point b in S3 � L and paths pi from b to Di, also in
S3�L. Let ij be a segment of the ow going from Ci to Cj without meeting any
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Figure A.8: A template for the ow in Figure A.7.

of the Ck in between. Now form a loop consisting of ij , pi, pj and, if needed, a
short segment in Di and in Dj . If the Ck have been chosen small enough, then
the linking number of any such loop with a speci�ed component of L depends
only on i and j. One can �nd su�ciently �ne fCigni=1 by changing the matrix
A in its shift equivalence class. This also determines a structure matrix S.

De�nition A.2.8 The linking matrix K associated with such a choice of the
Ck for a given link L is then de�ned to be

Kij = Sijt
`k1
1 t`k22 � � � t`k�� ;

where � is the number of components of the link and `kp is the linking number
of the loops formed from segments connecting Ci to Cj and the pth component
of L.

Theorem A.2.9 (Franks [52]) Suppose that �t is a nonsingular Smale ow
on S3, L is a �-component link of closed orbits oriented by the ow, each an
attractor or repellor, and that fKigni=1 are linking matrices of the saddle sets
with respect to L. Let mij denote the linking number of the ith component of L
with the jth component of the set of attractors and repellors not in L. If � = 1,
i.e., L is a knot, then

�L(t) =
(1� t)

Q
i det(I �Ki)Q

k(1� tm1k )
;

is an isotopy invariant of the oriented knot, up to multiples of �t�1. This
invariant is precisely the Alexander polynomial of the knot [154, 33]. If, if � > 1,

�L(t1; :::; t�) =

Q
i det(I �Ki)Q

k(1� tm1k � � � tm�k )
;
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is an isotopy invariant of the oriented link, up to multiples of �t�1j . Again, this
invariant is the Alexander polynomial of the link L.

Example A.2.10 Figure A.9 shows a Smale ow with three basic sets. The
attractor a is a trefoil knot. The saddle set can clearly be modeled by a Lorenz
template. Using the obvious two-element Markov partition for the Lorenz tem-
plate, we �nd that a linking matrix for the saddle set with respect to the one-

component link a is

�
t t

1=t 1=t

�
: Thus, the Alexander polynomial of a is

�t�1 + 1 � t. Any isolated closed orbit in a Smale ow which has polynomial
di�erent from this, up to multiples of t, cannot be isotopic to the trefoil.

Finally, in [56] we have an abstract classi�cation of nonsingular Smale ows
on S3. The major new tool is the Lyapunov graph. Given a Smale ow on a
manifold there exists a smooth function from the manifold to the reals which
is non-increasing with respect to the ow (time) parameter [53, pages 1 and
2]. Thus, each basic set is mapped to a point. This is called a Lyapunov func-
tion. The Lyapunov graph is de�ned by identifying connected components of
the inverse images of points in the real line. Each vertex of the graph is a point
whose connected component contains a basic set. Vertices is labeled by the
corresponding basic sets and edges are oriented by the ow direction.

Suppose � is an abstract Lyapunov graph whose sinks and sources are each
labeled with a single attracting or repelling periodic orbit and suppose each
remaining vertex is labeled with the suspension of a subshift of �nite type. Then
� is associated with a nonsingular Smale ow on S3 if and only if the following
are satis�ed: (1) The graph � is a tree with one edge attached to each source
and each sink vertex. (2) If v is a saddle vertex whose basic set has transition
matrix A and with e+v entering edges and e�v exiting edges then

e+v � ZA + 1

e�v � ZA + 1

ZA + 1 � e+v + e�v :

Here, ZA is a the Zeeman number de�ned by dim ker((I � A2) : Z
n
2 ! Z

n
2 ),

where A2 is the mod 2 reduction of A, Z2 is the integers mod 2, and n is the
size of A.

An abstract classi�cation theorem for Smale ows in S3 with singularities
has been obtained by de Rezende [40].

A.3 Smale ows, embedded

The contrast between Smale and Morse-Smale ows reveals itself not only in
the saddle sets, but also in the embedding of the isolated periodic orbits. For a
nonsingular Smale ow on S3, any link can be the attractor, in contrast to the
restricted class described in Wada's Theorem A.1.13.
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Figure A.9: A Smale ow with an attracting trefoil, a, a Lorenz saddle set, and
an unknotted repellor, r.

Theorem A.3.1 (Franks [52]) If L is any smooth link in S3 then there exists
a nonsingular Smale ow �t on S3 such that L is the set of attractors and �t
has a single unknotted repellor.

Outline of Proof: Consider a disk D2 with n distinguished points placed
along a line within D2. There exists a Smale di�eomorphism from D2 into itself
which �xes this set of n points as attractors, permutes two adjacent points, and
�xes the n � 2 remaining points individually. Of course, several saddle points
must also exist, to separate the domains of attraction. The suspension of this
di�eomorphism can be embedded so that the trajectories on the n distinguished
attracting points trace out the closure of a standard generator �i of the braid
group Bn (cf. x1.1): see Figure A.10. Then, the suspension ow is a Smale ow,
in-owing on @D2 � S1.

By suspending the composition of several such Smale di�eomorphisms, one
may form a nonsingular Smale ow on a solid torus having any braid as an at-
tractor. Some care is needed to make sure the vector �eld is smooth. Since any
link can be braided (Theorem 1.1.13), adding a single repellor in the comple-
mentary solid torus yields the desired result. 2

Remark A.3.2 Notice that, in this construction, the repellor links the attract-
ing link n times. That is, the sum of the linking numbers of the repellor over
all the components of the attractor is n. Theorem A.3.1 may be re�ned to show
that the repellor need not link the attractor at all.
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Figure A.10: The suspension of a disk map in which the saddle points trace out
a braid.

As a �nal variation on this theme we prove the following result, which is a
bit weaker, but has an interesting proof:

Theorem A.3.3 If L is any smooth link in S3, then there exists a nonsingular
Smale ow with one saddle set such that L is a subcollection of the set of at-
tractors, and such that there is a unique repellor which, together with one other
attractor, forms a Hopf link separable from L.

Proof: Figure A.11 shows a Smale ow whose saddle set can be modeled with
the template V from x3.2. The attracting and repelling orbits form a Hopf link
which can separated from the saddle set by a 2-sphere.

Recall the DA move for templates, related to the DA procedure of x2.2.2,
and used on the horseshoe template in x4.2.1: this involves splitting a template
T along a periodic orbit K to obtain a new template DAK(T ) with K as an
attractor. Figure A.12 shows this process for an orbit on V . Now, if T is a model
of a saddle set in some Smale ow, we may form a new Smale ow, replacing
T with a saddle set modeled by DAK(T ) and a new attracting orbit with knot
type K, linking each orbit in DAK(T ) just asK did. By looking at the action on
branch line charts, it is clear that this splitting on a connected template yields a
connected template; all other basic set are unchanged. In Figure A.13, we show
the result of this construction on the Smale ow of Figure A.11 using the orbit
depicted in Figure A.12.

By Theorem 3.2.8, the link L is in V as a collection of closed orbitsK1; : : : ;Kn.
We apply the DA process above to K1; : : : ;Kn successively to produce the de-
sired ow. 2

Remark A.3.4 We now have a method for creating new Smale ows from old
ones that at least suggests a bifurcation process, much as in Examples A.1.7 and
A.1.9 of xA.1.
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Figure A.11: A universal template V in a Smale ow.

A.3.1 Lorenz templates

We now consider the problem of realizing Smale ows from another viewpoint.
Suppose we have a nonsingular Smale ow of S3 with three basic sets, a unique
attracting closed orbit, a unique repelling closed orbit, and a unique saddle set
modeled topologically by a Lorenz template. That is, there exists a neighborhood
of the saddle set foliated by local stable manifolds, such that when the leaves of
the stable manifolds are identi�ed, we get an embedding of the Lorenz template
L(0; 0). Let Na, Nr and NL be isolating tubular neighborhoods of the attractor,
the repellor and the saddle set respectively. We ask: what are all the possible
con�gurations of such a system? We want to classify the embeddings of Na, Nr

and NL up to ambient isotopy, mirror images and ow reversal. To date, it is
possible only to give a partial answer.

We start by showing in Figure A.14 an isolating neighborhood, NL, of the
Lorenz saddle set glued to a 3-ball along its exit set. Topologically, the union it
just a 3-ball itself. Thus, we may build a ow consisting of an attracting �xed
point in the original 3-ball, the Lorenz saddle set, and a repelling �xed point in
S3 minus the Lorenz union 3-ball.

Figure A.14 also shows two ways one might attach handles to the 3-ball so
as to turn it into a solid torus. Suppose we attach the handle to to the small
disks marked C and C 0 in the manner shown. Call the resulting solid torus N 0

a.
If we take NL [N 0

a the result is still a solid torus, and the complement in S3 is
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Figure A.12: The DA move on a closed orbit in V .

just another solid torus, N 0
r. We may now build a Smale ow with an attractor

in N 0
a, a repellor in N

0
r and a Lorenz saddle set in NL.

The exit set of NL contains two annuli which are labeled X and Y in the
�gure. Call the cores of X and Y , x and y respectively. The reader should check
that x and y each bound disks in @N 0

a.
Upon further inspection the reader should be able to see that x and y can

be made parallel. To be more precise, y and x together form the boundary of
an annulus in @N 0

a.
Now, instead on attaching a handle at C and C 0, attach one to B and B0

as shown again in Figure A.14. This time call the solid torus obtained N 00
a . As

before NL [ N 00
a is a solid torus with solid torus complement in S3. Thus we

have a Smale ow. Is it the same as the previous example?
To see that these ows di�er, consider again the loops x and y. They are

still both inessential, that is they both bound disks in @N 00
a . But they are no

longer concentric. This can be seen from careful study of the �gure.
These two examples are the only Smale ows with the three basic sets we

speci�ed with both the loops x and y inessential in the boundary of the tubular
neighborhood of the attracting orbit. We shall not prove this fact here, though
the argument is quite standard.

In order to complete our task we have to consider two more cases, x and y
both essential and one essential and the other not. An example of the latter
can be obtained by attaching a handle to the disks on the 3-ball labeled A and
B in Figure A.14. It can be shown that if y is essential and x is not, then the
annulus Y can have any number of full twists if y is unknotted. If y is knotted,
it must be a torus knot, and the amount of twist is �xed by the knot type of y.
In all cases X is untwisted and the attractor-repellor pair forms a Hopf link. In
Figure A.15 we show the y loop is a (2,1) curve on A. Detailed proofs of these
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Figure A.13: The template DAK(V) in a Smale ow.

claims can be found in [172].
For an example of both x and y essential, connect a handle to the disks A

and C, so that the complement in S3 is an unknotted solid torus. This was
shown above in Figure A.9. The attractor is a trefoil knot. It is shown in [172]
that, up to mirror images and ow reversal, this is the only case for x and y

both essential.
It is unlikely that there will ever be as complete an understanding of Smale

ows, even nonsingular ones in S3, as Wada and others have provided for non-
singular Morse-Smale ows in S3. However, we hope that the tools sketched
here and currently under development will enable researchers to analyze those
Smale ows in 3-manifolds that are of special interest to them.
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Figure A.14: A neighborhood of the Lorenz saddle set is glued to a 3-ball.

Figure A.15: The y loop is a (2,1) cable.
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di�eomorphism, 20
ow, 22, 180

split sum, 174
splitting chart, 38
stable manifold

ow, 21
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local, 21
map, 19
local, 19

Stable Manifold Theorem, 19
ow, 22

strong shift equivalence, 146
structural stability, 17
structure matrix, 181
subshift of �nite type, 22, 105, 145

one-sided, 24
subtemplate, 64, 97
suspension, 20
syllables, 117
symbolic dynamics, 22
symbolic period, 63

template, 37
boundary, 62
branch line, 38
branch segment, 61
companion, 124
equivalence, 143
�gure eight, 56
gluing
buttery, 130
�gure-of-eight, 130

horseshoe, 48, 112
induced, 57, 105
ination, 66
isotopic, 67

irreducible, 75
joining chart, 38
Lorenz, 47
Lorenz-like, 47, 78, 90, 93
moves, 143
normal form, 38
positive, 69, 76, 154
renormalization, 64
isotopic, 65

ribbon set, 150
satellite, 124
Shil'nikov
double, 137
single, 135

splitting chart, 38
subtemplate, 64, 97

Template Theorem, 38
universal, 69, 78, 89
V , 65, 79
Whitehead, 56
zeta function, 157

Template Theorem, 38
time series, 57
topological entropy, 26
toral Anosov map, 18
torus knot, 7

generalized iterated, 10
genus, 14
horseshoe, 115
iterated, 9, 127
resonant, 112

transition matrix, 22
trefoil, 5
twist

computed, 155
matrix, 157
modi�ed, 155
usual, 155

universal template, 69, 78, 89
unknot, 5, 55
unlinked, 13
unstable manifold

ow, 21
local, 21

map, 19
local, 19

usual twist, 155

V , 65, 79
vertex graph, 23

Wada Theorem, 178
Whitehead link, 13, 56

Zeeman number, 184
zeta function, 154, 157


